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Abstract

Background

Retrospective case-control designs are widely used in genetic epidemiological studies, especially
genome wide association studies (GWAS), for the identi�cation and characterization of susceptibility
genes involved in common complex multifactorial human diseases. The basic idea is to compare
genotypes of cases and controls. If alleles or genotypes frequencies at di�erent loci are signi�cantly
di�erent in cases and controls, these alleles or genotypes are claimed to be associated with the disease
status. The evidence of these associations not only contribute to gene mapping programs but also
provide insights to possible therapeutic approaches. Complex common diseases have multi-loci (or
polygenic) risk factors which marginally only explain a small proportion of the genetic heritability
of these diseases. It is suspected that a signi�cant part of genetic risks of complex human diseases
is due to interaction e�ects of two or more genes involved in di�erent forms of epistasis. Among the
statistical methods speci�cally designed to detect gene-gene interaction in genome-wide association
studies, the Model-Based Multifactor-Dimensionality Reduction (MB-MDR) algorithm is a non-
parametric method of interest. In GWAS, genotyping chips technologies provide between 300.000
and more than 1 million genetic markers (SNPs) information per subject. For 500.000 SNPs, the
number of pairwise combinations of these markers is around 125 billion and so is the number of
statistical hypotheses tests. This raises a serious multiple testing problem. The multiple testing issue
has usually been addressed by di�erent approaches like �ltering through prioritization or Linkage
Disequilibrium (LD) pruning in addition to family-wise error rate corrections.

Objectives

The performances of MB-MDR in detecting gene-gene interaction in genome-wide association
studies is poorly documented in the literature. In this work, we aimed at building di�erent simula-
ted datasets harboring known hidden pairs of epistatic genetic markers. The objective is to use these
simulated datasets to measure the sensitivity (power) of MB-MDR in di�erent con�gurations of the
embedded hidden known pair of markers. Two main concerns in building the simulation datasets
require to incorporate realistic human genome linkage disequilibrium patterns and to control popu-
lation strati�cation because both confound gene-gene interaction e�ect on the phenotype (disease).

Methods

The work is limited to a binary phenotype (case/control) and is limited to pairs of bi-allelic
markers. Real LD patterns from two 250 kbps DNA segments from human chromosome 7 and 8 were
downloaded from the HapMap 3 'GBR' subpopulation in order to avoid population substructure.
Four con�gurations for which the position of pairs of 'causal' embedded markers varied within or
between LD blocks were set, each with three di�erent e�ect sizes of purely epistatic interaction of
one locus (DSL 1) to the other locus (DSL 2). The three interaction e�ect sizes were tuned upfront
with a logistic regression model. The sensitivity to detect the correct causal SNPs directly or their
tagged SNPs indirectly was measured as the number of times out of 100 simulated datasets, the
MB-MDR algorithm identi�ed the correct pairs of loci of interests. No prioritization �ltering was
applied. Only LD pruning was carried out before MB-MDR analysis at four di�erent thresholds of
linkage disequilibrium r2 = 0.75, 0.60, 0.50 and 0.20, in addition to no LD pruning at all.



Results

Due to the family wise error rate adopted as a multiple testing correction and to the associated
large number of possible false positives, the exact sensitivity was never better than 0.70 without LD
pruning and in most of our simulated datasets below 0.50. The signal sensitivity (indirect detection
of the pairwise interaction under interest, due to linkage disequilibrium with tag-markers) was always
better than 0.70 and in the range 0.70− 0.95 with a LD pruning at a threshold of at least r2 = 0.50.
In most of our simulated settings, a LD-pruning threshold of 0.20 tends to decrease the indirect
sensitivity. It appears that the correlation between SNP markers and the causal loci is useful in
detecting gene-gene interaction associated to a complex phenotype. The signal sensitivity, however,
does not appear to be much a�ected by the e�ect size at least in the case of pure epistasis in our
simulated datasets.

As a concrete application of our results, we applied the LD pruning threshold of r2 = 0.50
and MB-MDR on the real life dataset of the ankylosing spondylitis dataset and checked that the
already known epistatic functional variants were correctly identi�ed (at least indirectly through their
tagged-markers). An inconvenience still remains in the large number of hypothetically false positive
encountered results caused by the large number of pairwise combinations leading to a huge number
of multiple tests.

Note on softwares and genomic data web repositories

Bioinformatics researchers are advised to get familiar with the UNIX environment and with the
Linux operating system. The GIGA multicore cluster platform was used to submit the computer
intensive jobs described in this thesis. The main third party bioinformatics softwares of simulation
environment or of statistical analysis that were used for this thesis were vcftools, Haploview, PLINK,
simuPOP, MB-MDR and R packages.

Used Genomic data web repositories were : NCBI, Ensembl, 1000 Genome Project, UCSC,
dbSNP.

Real life dataset

The ankylosing spondylatis dataset was obtained from the WTCCC2.
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Introduction

DNA sequences between humans are highly conserved and there is almost no variability within
the human species : two Homo sapiens individuals taken at random have 99.7 − 99.9% identity in
their DNA sequence. The human genome (23 chromosome pairs) is about 3.2 Giga bp in size and it
is estimated that the variability roughly concerns 0.1− 0.3% of the genome, i.e. 3− 10 million base-
pairs is the order of magnitude for the genotype variability between any two human individuals.
The NCBI dbSNP database has more than ∼ 70 million validated SNPs in the human species.
There are SNP-genotyping chips technologies (Illumina and A�ymetrics) that allow us to scan this
genome variability and characterize the speci�c genotype of an individual on a genome-wide basis.
The result of one individual genome-wide genotype is a record with a number of variables (SNPs)
that ranges between 250.000 to more than 1 million and which provides a fairly good coverage of the
human genome variability because of the so-called linkage disequilibrium. If such genotyping records
are collected for thousands of individuals in case-control retrospective studies, one immediately sees
that the dataset size will be huge and the statistical methods are bound to require computer intensive
methods. The number (p) of variables (SNPs) is much larger than the number (n) of observations
(individuals) and we have to deal with high dimensionality.

This Master thesis addresses both �elds of Computer intensive methods in Bioinformatics [1]
and Statistical genetics/genetic epidemiology.

Genetic epidemiology and statistical genetics have their own jargon. Though it is not the purpose
of this master thesis to provide all the de�nitions, a glossary of the most important terms encoun-
tered in this thesis is provided in the appendix and we sum up here the most general concepts. An
introductory course in genetic epidemiology was given by Claesen (2016) [2] and in the the book by
Laird and Lange (2011) for statistical genetics [3]. A concise introduction to genome-wide association
studies can be found in Bush and Moore (2012) [4] and reviews articles on gene-gene interaction can
be found in Van Steen (2012) [5] and in Cordell (2009) [6] for the detection of gene-gene interac-
tion that underlie human diseases. An interdisciplinary and consensual approach of the meaning of
interaction in genetics is provided by Wang, Elston and Zhu [7]. Because gene-gene interaction is a
focus of our work, we will provide shortly below a description of a well documented model that we
found helpful in understanding genetic epistasis from a molecular biology perspective.

1.1 Important issues in Human Genetics and in Genomic Study
Design

1.1.1 GWAS

Genome-wide association studies (GWAS) are providing a powerful tool for investigating the ge-
netic architecture of common human diseases that have a complex multifactorial etiology. A central
goal of human genetics is to identify genetic risk factors for common complex diseases such as in�am-
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matory bowel disease (Crohn's disease), Alzheimer's disease, ankylosing spondylitis, type II diabetes
or sporadic breast cancer and for rare Mendelian diseases such as phenylketonuria, Huntington di-
sease, sickle cell anemia or cystic �brosis. There are di�erent approaches to identifying genetic risk
factors. GWAS measures and analyzes DNA sequence variations from across the human genome with
the purpose of identifying genetic risk factors for diseases that are common in the population. The
ultimate goal is to make predictions about who is at risk and to identify the biological mechanisms
of disease susceptibility with the aim of developing new prevention and treatment strategies.

1.1.2 Single Nucleotide Polymorphism (SNPs)

               

 

 

 

Figure 1.1 � SNP : Single Nucleotide Polymorphism. Left panel : SNP shown as alleles of two
homologous chromosomes (heterozygous genotype). Right panel : SNP shown as two variants on two
homologous chromosomes from two di�erent subjects.

The unit of genetic variation is the single nucleotide polymorphism (SNP). The term polymor-
phism is de�ned simply as a genetic variant at a single location (within a gene or not). The double
stranded DNA structure requires that each homologous chromosome has complementary base pairs
at each location as displayed on the left panel of Figure 1.1, which shows a SNP at a pair of non-
identical, yet homologous, chromosomes of a diploid individual. One chromosomal variant can be
labeled 'A', and the other 'a' (bi-allelic variant). The 'A' allele should not be confused with the A
(Adenine) base in the DNA sequence ; rather it is just a conventional notation for an allele. Due to
the base pairing of the double-stranded structure of DNA (base complementarity), there is redun-
dant information ; and we only need to read one strand. By convention, we read left to right from
the 5′ → 3′ strand (+ or direct strand, the green strand in the left panel of Figure 1.1). The two
alleles in the �gure di�er only in the �fth base pair, where a C base is substituted for a T. Whether
or not this di�erence is biologically meaningful depends on where it occurs in the sequence and on
the nature of the letter change (synonymous or non-synonymous or stop-codon). The right panel
of Figure 1.1 shows the SNPs variation between two individuals (only one of the two homologous
chromosome is displayed). SNPs are the most abundant type of sequence variants in the genome,
occurring approximately once in every 100 to 300 base-pairs [8]. If the SNP is functional (causal),
the trait (phenotype or disease) is in�uenced directly.

Candidate gene studies generally involve multiple SNPs within a single gene. The choice of SNPs
depends on de�ned linkage disequilibrium (LD) blocks and is discussed further below. The underlying
motivation is that the SNPs under investigation capture information about the underlying genetic
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Figure 1.2 � LD blocks with tag-SNPs and causal variant (DSL). Credits : Foulkes [9].

variability of the gene under consideration, though the SNPs (tag-SNPs) may not serve as the true
disease causing variants. Suppose we want to investigate the association between a gene and disease.
A gene comprises a region of DNA representing a portion of the human genome. This is illustrated
in Figure 1.2 inspired from Foulkes [9]. In a simple model, we could assume that a mutation at a
single site within the gene region results in the disease. The precise location is generally not known.
Instead, multiple SNPs that are presumed close to the functional locus on the genome are measured.
The proximate SNPs are commonly referred to as markers since the observed genotype at these
locations tends to be associated with the genotype at the true disease-causing locus (causal variant).
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1.1.3 Complex diseases-traits

The term "complex trait" refers to any phenotype that does not exhibit classic Mendelian re-
cessive or dominant inheritance attributable to a single gene locus [10]. Complexities arise when
the simple correspondance between genotype and phenotype breaks down, either because the same
genotype can result in di�erent phenotypes due to e�ects of chance, environment, or interactions
with other genes or di�erent genotypes can result in the same phenotype. It is unlikely to �nd
a genetic marker that shows perfect cosegregation with a complex trait. Complex traits are often
characterized by incomplete penetrance and phenocopies, genetic loci heterogeneity and polygenic
inheritance. Some individuals who inherit a predisposing allele may not exhibit the trait (incomplete
penetrance), whereas others who inherit no predisposing allele may nonetheless get the trait as a
result of environmental or random causes (phenocopy). So, the genotype at a given locus may a�ect
the probability of the trait, but not fully determine the outcome. The penetrance function speci�es
the probability of the trait conditional on the genotype and the penetrance function can also depend
on non genetic factors such as age, sex, environment and other genes. For example, the risk of breast
cancer by ages 40, 55 and 80 is 37%, 66%, 85% in a woman carrying a mutation at the BRCA1
locus as compared with 0.4%, 3%, 8% in a non carrier. Locus heterogeneity means that mutations
in any one of several genes may result in identical phenotypes, such as when the genes are required
for a common biochemical pathway. Polygenic inheritance means that some traits may require the
simultaneous presence of mutations in multiple genes.

1.1.4 Missing heritability

The basic idea in the study of variation is its partitioning into components attributable to di�erent
causes. We want to explain the variation in a phenotype of interest (complex disease) according to
biologically plausible nature-nurture models. The components into which the phenotype variance
(VP ) is partitioned are basically the genotype (VG) and the environment (VE), as detailed in [11].
The genotype or total genetic variance can further be split into additive variance, VA (additive main
e�ects for single loci, also called breeding value), into dominance variance VD (interaction between
alleles at the same locus) and interaction variance VI (epistatic e�ects : interaction between alleles
at di�erent loci). There is also the possibility to have correlation between genetic e�ects and the
environment in which case twice the covariance of genotypic values and environment deviations
should be added in terms like 2 Cov(G,E) and interaction between genotypes and environments in
which case an extra interaction term, like VG ∗E , should be added. We take the strong assumption, for
now, that genetic e�ects and environmental e�ects are independent and we neglect such covariance
and interaction terms (because, currently, they often cannot be estimated). Thus :

VP = VG + VE (1.1)

= VA + VD + VI + VE + . . .+ 2 Cov(G,E) + VG ∗E︸ ︷︷ ︸
neglected

+ . . . (1.2)

The partitioning of the variance into its components allows us to estimate the relative importance
of the various determinants of the phenotype. The relative importance of heredity in determining
phenotypic values is called the heritability of the character. In quantitative classical genetics, there
are two distinctly di�erent meanings of heritability according to whether they refer to the additive
component of the genetic variance or the overall component of the genetic variance.

The ratio VG/VP is called the heritability in the broad sense and expresses the extent to which
individual's phenotype are determined by the genotypes. The ratio VA/VP is called heritability in
the narrow sense and expresses, in classical quantitative genetics, the extent to which phenotypes
are determined by the genes transmitted from parents.



1.1 Important issues in Human Genetics and in Genomic Study Design 5

In genome wide association studies of complex traits, one often refers to the "missing heritability".
In this context, the missing heritability refers to the fact that the ratio VA/VG is surprisingly low
for most complex traits.

One suspected possible cause for this missing heritability is the under-representation of complex
interplays within and between sets of rare/common variants. Researchers now want to better address
the VI component. This is why the subject of interaction analysis has been investigated in what is
called GWAIs (Genome-wide association interaction studies) since the turn of 2001-2003 and in the
aftermath of the Human Genome Project and HapMap Projects.

1.1.5 Common disease-common variant (CD/CV) hypothesis

Common diseases have a di�erent underlying genetic architecture than rare disorders. Several
susceptibility variants for common diseases have been discovered and show high minor allele fre-
quency (alleles in the apolipoprotein E or APOE gene for Alzheimer's disease are examples). This
lead to the common disease/common variant (CD/CV) hypothesis. This hypothesis states that com-
mon disorders are likely in�uenced by genetic variation that is also common in the population. There
are important consequences to this hypothesis as developed in [4].

If common genetic variants in�uence disease, the e�ect size (or penetrance) for any one variant
must be small relative to that found for rare disorders. If a SNP with 40% frequency in the population
causes a highly severe phenotype, nearly 40% of the population would have that phenotype. Thus
the allele frequency and the population prevalence are completely correlated. If however, that same
SNP caused a small change in gene expression that alter risk for disease by some small amount,
the prevalence of the disease and the in�uential allele would be only slightly correlated. As such,
common variants cannot have high penetrance.

If common alleles have small genetic e�ects (low penetrance), but common disorders show he-
ritability (inheritance in families), then multiple common alleles must in�uence susceptibility. For
example, twin studies might estimate the heritability of a common disease to be 40%, that is, 40%
of the total variance in disease risk is due to genetic factors. If the allele of a single SNP incurs only
a small degree of disease risk, that SNP only explains a small proportion of the total variance due
to genetic factors. As such, the total genetic risk due to common genetic variation must be spread
across multiple genetic factors.

These two arguments suggest that traditional family based genetic studies are not likely to be
successful for complex diseases, prompting a shift toward population-based studies.

1.1.6 The Human Haplotype Map Project

The location and density of commonly occurring SNPs is needed to identify the genomic regions
and individual sites that must be examined by genetic studies. Population-speci�c di�erences in
genetic variation must be cataloged so that studies of phenotypes in di�erent populations can be
conducted with the proper design. Finally and most importantly, correlations among genetic variants
must be known so that genetic studies do not collect redundant information. The International
HapMap Project was designed to identify variation across the genome and to characterize correlations
among variants. It was discovered at the turn of 2000-2002 that markers exhibit strong LD in
extended regions called blocks that are separated by punctate breakpoints. Given the importance of
linkage disequilibrium (LD) patterns in designing association studies (especially genome-wide), there
is great interest in evaluating theoretical predictions of the extent and distribution of LD among
markers. A full resolution of these issues would require a large-scale project to investigate the nature
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of LD across the entire genome. The international HapMap project was formally initiated in 2002
including researches from 20 groups in 6 countries with the aim of characterizing millions of DNA
sequence variants, their frequencies and the correlations between them in samples from populations
with ancestry from Africa, Asia and Europe. Further developments were made in HapMap 2, Hapmap
3 and the 1000 Genomes Project.

HapMap Anonymized samples were selected from four populations : 90 Yoruba (30 parent-parent-
o�spring trios) from Ibadan, Nigeria (abbreviated YRI) ; 90 individuals (30 trios) of European
ancestry from Utah, collected in 1980 by the Centre d'Etude du Polymorphisme Humain
(CEU) ; 45 unrelated Han Chinese from Beijing (CHB) ; and 45 unrelated Japanese from Tokyo
(JPT). Pilot studies and simulation indicated that complete ascertainment in 45 unrelated
individuals would represent 99% of variation with minor allele frequency (MAF) > 5% in the
populations from which the samples were drawn. SNPs were preferentially selected with the aim
of generating a map with a common (MAF > 5%) SNP in each population every 5 kilobases.
The resulting �rst generation HapMap [12] yielded 2 important advances : the validation of
a large number of common SNPs (1.2 million unique SNPs passed quality control measures)
and the opportunity to develop medium and high throughput genotyping technologies which
enabled the subsequent wave of genome-wide association studies. The project also veri�ed that
the previously observed block-like patterns of LD generalized to the entire genome and was not
an artifact of small sample size or lower marker density. Recombination hotspots are ubiquitous
in the genome and are the driving force behind the observed LD patterns (with block of high LD
corresponding to inter-hotspot intervals and sharp breakdowns of LD mapping to hotspots).
The genome-wide LD map made it straightforward to select a subset of common markers
that captures nearly all the information contained in the full set. This process of thinning out
markers based on r2, or "SNP tagging", made association studies more comprehensive and
e�cient.

HapMap 2 A second generation map was published in 2007 [13] with a total of 3.1 million SNPs
which still provide better tag SNP selection, more precise estimates of local recombination
rates.

HapMap 3 The third phase of HapMap [14] extended to include samples from a number of addi-
tional populations and provided a map with a common MAF > 1% SNP for 11 populations.

1000 Genomes Project The 1000 Genomes project [15] pushes the HapMap paradigm into the
analysis of rarer variation, including copy number variation and short insertion/deletion poly-
morphisms in addition to SNPs. 26 populations around the world make up the database with
2.535 individuals. Some conclusions of this project include the following : More than 79 million
variant sites have been validated. The highest rates of variation tended to occur at the HLA
encoding region on chromosome 6 and subtelomeric regions. Lowest rates occured in 5 Mb,
gene dense region around 3p21. The project is useful to impute SNPs for genome wide asso-
ciation studies. A typical individual human genome harbors more than 10.000 nonsynonymous
variants. Each person in the project (each of us in general) has 20-40 variants at conserved
sites that are identi�ed as damaging ; 10-20 loss of function variants ; 2-5 damaging mutations ;
1-2 variants previously identi�ed from cancer genome sequencing.

1.1.7 Linkage Disequilibrium

Linkage disequilibrium (LD) is a property of SNPs on a contiguous stretch of genomic sequence
that describes the degree to which an allele of one SNPs is inherited or correlated with an allele of
another SNP within a population. It is related to the concept of chromosomal linkage, where two
markers on a chromosome remain physically joined on a chromosome through generations of a family
provided no crossing over occurs between the two markers at meiosis between non-sister chromatids.



1.1 Important issues in Human Genetics and in Genomic Study Design 7

Figure 1.3 � Linkage and Linkage Disequilibrium. Within a family, linkage occurs when two genetic
markers (points on a chromosome) remain linked on a chromosome rather than being broken apart by
recombination events during meiosis. In a population, contiguous stretches of founder chromosomes
from the initial generation are sequentially reduced in size by recombination events. Over time,
a pair of markers in the population move from linkage disequilibrium to linkage equilibrium, as
recombination events eventually occur between every possible point on the chromosome. Credits :
Bush WS and Moore JH [4].

In Figure 1.3, two founder chromosomes are shown (one in blue and one in orange). Recombina-
tion events within a family from generation to generation break apart chromosomal segments. This
e�ect is ampli�ed through generations, and in a population of �xed size undergoing random ma-
ting, repeated random recombination events will break apart segments of contiguous chromosome
that contained linked alleles until eventually all alleles in the population are in linkage equilibrium
or are independent. The linkage between markers on a population scale is referred to as linkage
disequilibrium (LD). In samples of unrelated subjects, the 'genetic signal' (disease gene or disease
susceptibility locus DSL) has a short range in which it can be detected at marker loci, if the genetic
variant is old, i.e., it occurred for the �rst time many, many generations ago. The Figure 1.3 can also
illustrate this property. Two 'unrelated', a�ected subjects whose disease is triggered by the same ge-
netic variant may have had a common ancestor many generations ago in whom the disease mutation
initially occurred making them cryptically related. In Figure 1.3, the blue and orange chromosome
in the initial generation can be considered as the pair of chromosomes from the common ancestor in
whom the disease variant (DSL somewhere in the orange chromosome) occurred for the �rst time.
The last line in the right panel of Figure 1.3 shows a population of 'unrelated' study subjects whose
disease chromosomes originated from the common ancestor with the original disease mutation. Due
to the numerous recombination events that took place during the meiotic cell divisions between the
generations (middle part of Figure), the original chromosomes on the common ancestor have been
divided many times and the majority of its parts have been replaced by other copies of the same
chromosomal segment. As a consequence the orange area around the original disease mutation that
have remained unchanged are much smaller now, naturally reducing the range in which the genetic
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signal can be detected. The genetic marker loci have now to be very close to the disease mutation
in order to identify the disease gene. However, any markers in the orange regions surrounding the
DSL allele at the bottom of the left panel in Figure 1.3 have the important property that they share
the same ancestral allele. That is, each diseased person shares the ancestral disease allele at the
DSL location from the orange chromosome, and they also have the same allele at any marker in the
orange area surrounding the DSL allele. In other words, two particular alleles, one from each locus,
tend to appear together on the same haplotype in a population. The physical distance between loci
is di�erent from the linkage distance (Haldane distance, L = −1

2 ln(1− θ)) but, as a rule of thumb,
for the human species, 1 centiMorgan (cM), characterizing a 1% chance of recombination between
two loci occurring at meiosis (L = θ when θ is small), corresponds to 1 million base pairs in physical
distance. The rate of LD decay is dependent on multiple factors, including the population size, the
number of founding chromosomes in the population, and the number of generations for which the
population has existed. As such, di�erent human subpopulations have di�erent degrees and patterns
of LD. African-descent populations are the most ancestral and have smaller regions of LD due to
the accumulation of more recombination events in that group. European-descent and Asian descent
populations were created by founder events (a sampling of chromosomes from the African popula-
tion), which altered the number of founding chromosomes, the population size, and the generational
age of the population. These populations on average have larger regions of LD than African-descent
groups.

The two commonly used measures of linkage disequilibrium are D′ and r2 explained below.

Let the alleles at two markers be denoted A,a and B,b. Let the allele frequencies at each marker
be pA, pa, pB, pb and let pAB, pAb, paB, pab denote the frequencies of the four possible haplotypes.
Thus pAB denotes the frequency of a randomly selected haplotype from the population with alleles
A and B observed at the two loci. Linkage Equilibrium implies that the haplotype frequencies are
given by the product of the corresponding allele frequencies. The resulting frequencies are given in
Table 1.1 in case of independence. The LE corresponds to our usual notion of independence in a 2×2

Table 1.1 � Expected allele distribution under independence

B locus

A locus B b Total

A pAB = pApB pAb = pApb pA
a paB = papB pab = papb pa

Column Total pB pb

table. The haplotype frequency is just the joint probability of A and B being observed on the same
haplotype, and the allele frequencies are the marginal frequencies. When LE fails, the number of
alleles at two loci is not the product of the individual allele frequencies. The LD coe�cient, usually
denoted by D, measures the departure from independence :

D = pAB − pApB (1.3)

A substantial di�culty with using D to measure the lack of independence in the 2× 2 table shown
in Table 1.2 is that D is highly sensitive to marginal values, which makes it di�cult to compare
LD among many pairs of markers with diverse frequencies. Furthermore, the sign of D depends
on an arbitrary coding of the alleles. For this reason, two derived LD statistics are both frequency
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Table 1.2 � Observed allele distribution under LD

B locus

A locus B b Total

A pAB = pApB +D pAb = pApb −D pA
a paB = papB −D pab = papb +D pa

Column Total pB pb

normalized and are in use. We �rst de�ne minimum and maximum values for D as :

Dmin = min(pApB, papb) (1.4)

Dmax = max(pApb, papB) (1.5)

The �rst derived LD value is D′ :
For D positive :

D′ =
D

Dmax
(1.6)

For D negative :

D′ =
D

Dmin
(1.7)

The second derived LD value is r2, the squared Pearson correlation coe�cient r :

r2 =
D2

pApBpapb
(1.8)

A D′ value of 0 indicates complete linkage equilibrium, which implies frequent recombination
between the two markers and statistical independence under assumptions of Hardy-Weinberg equi-
librium (random mating, no selection, no mutation, no in or out migration and constant allele
frequencies). A D′ = 1 corresponds to complete LD, indicating no recombination between the two
markers within the population. High r2 values, statistical measure of correlation, indicate that two
markers (SNPs) convey similar information. So, only one of the two SNPs needs to be genotyped to
capture the allele variation. SNPs that are selected speci�cally to capture the variation at nearby
sites in the genome are called tag SNPs because alleles for these SNPs tag the surrounding stretch
of LD. Patterns of LD are population speci�c.

One often forgotten issue associated with LD measures is that current technology does not
allow direct measurement of haplotype frequencies from a sample because each SNP is genotyped
independently and the phase or chromosome of origin for each allele is unknown.

We now provide an overview to show how LD between a marker and a DSL will induce asociation
between the phenotype and the marker. Consider a case-control study with equal numbers of cases
and controls. Let P (A|case) and P (A|control) be the frequency of the disease allele A among the
cases and controls, respectively, and let a denote the non-disease alleles. A test of association between
the DSL and the disease can be framed as no di�erence in allele frequency among cases and controls
(null hypothesis), or :

H0 : ∆A = 0 (1.9)

where ∆A = P (A|case)− P (A|control) (1.10)
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Actually, we do not observe the disease locus, but instead a marker with alleles B and b. Then,
de�ning ∆B as :

∆B = P (B|case)− P (B|control) (1.11)

and assuming that p(disease) does not depend on the marker genotype given the genotype at the
DSL, we have [16] :

∆B = ∆A · (P (B|A)− P (B|a)) (1.12)

Note that in the absence of LD, the alleles at the DSL and the marker are independent,

P (B|A) = P (B|a) = P (B) (1.13)

hence ∆B = 0. Thus there will be no association between disease and a marker, unless the marker
allele is associated with the disease allele. It is shown in [3] that

P (B|A)− P (B|a) =
√
pBpb · r (1.14)

where r is the allelic correlation between the two loci, and pB and pb denote allele frequencies at the
marker. Hence we have

∆B = ∆A ·
√
pBpb · r (1.15)

which implies that ∆2
B < ∆2

A. The e�ect on power of the test depend on allele frequencies at the
two loci and on the correlation between the two loci (LD). To achieve (approximately) the same
power at the marker locus as would be achieved at the DSL if we knew it, the sample size must be
increased by a factor of 1/r2 [16].

How far the range of useful LD (meaning the signal from DSL to marker is still strong enough for
detection) extends in terms of physical distance in base pairs ? They range between 50 kbp and 300
kbp. The HapMap and 1000 Genome Projects have shown that the relationship between distance
and LD is not a smooth one.

Figure 1.4 output from Haploview illustrates the local LD structure of SNPs for the same gene in
two di�erent populations. The HBB gene on chromosome 11 (chr11 :5246535-5248462 bp) encodes
the β-globin chain for haemoglobin. There are 5 exons and 4 introns. The Yoruba in Ibadan (YRI,
Nigeria) and England and Scotland in Great Britain (GBR, UK) populations from the 1000 Genome
Project are compared with respect to the LD pattern of the polymorphism related to this gene. The
data were downloaded from Ensembl 1000 Genome browser GRCh38 and visualized with Haploview
4.1. There are a dozen SNPs in this 2 kbp region of the human genome. Note that the rs334 variant
is present in the YRI population but not in the GBR population. Remember that the rs334 variant
is known to cause a substitution from Glutamic acid to Valine aminoacid residue at position 7 in the
β-chain HBB protein which is the cause of sickle cell anemia, but can be advantageous to individuals
exposed to Malaria. The HBB is a reversed-stranded gene and the majority allele on the forward
strand is T at this locus. The rs334 minor allele variant is a A on this SNP locus. Comparing the
LD local patterns of the two populations �rst shows that the polymorphism is higher in the African
population than in the British one (there are 14 SNPs in YRI and 10 SNPs in GBR for this 2 kbp
region). Second, the LD (r2) values are higher for LD in GBR (∼ 0.68) than in YRI (∼ 0.58) :
correlation between the same pairs of SNPs are higher in the GBR group than in the YRI group
meaning more recombination occurred in the YRI group than in the GBR group because of an older
ancestry in founder population for the YRI group. This example should remind us that LD patterns
may be di�erent across ethnicity. Furthermore, even if there are similar patterns in LD blocks, the
measure of the intensity of correlation in LD blocks can be di�erent across ethnic groups and LD
patterns change over time (after a large number of generations). This is one of the reasons to control
for population substructure in GWAS studies.
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Figure 1.4 � Local LD structure in β-globin gene. Red squares showing more intense correlation.
The numbers in the squares are the r2 values between SNPs that correspond to the squares (left
panel : YRI Yoruba from Ibadan Nigeria, right panel : GBR England and Scotland from UK).

1.1.8 Epistasis

Epistasis can be loosely de�ned as the interaction between two or more genes [17]. However, it
is not clear what is meant by "interaction" and can vary between biologists and statisticians.

Biological Epistasis

The term epistatic was �rst coined by William Bateson in 1909 [18]. Epistasis describes a masking
e�ect, whereby a variant or allele at one locus masks the expression of a phenotype at another locus.
This de�nition is analogous to the meaning of dominance from Mendelian genetics, which refers to a
situation where an allele masks the expression of other alleles at the same locus. In its broadest sense,
epistasis means that the genetic background can determine whether a mutation a�ects the phenotype
of an individual or not. Lehner reviewed di�erent molecular mechanisms of epistasis between genes
and within genes [19]. As emphasized by Moore [20], biological epistasis occurs at the level of an
individual.

Statistical Epistasis

In the case of quantitative traits, epistasis refers to a deviation from additivity in the e�ect of
alleles at di�erent loci with respect to their contribution to the quantitative phenotype. It describes
the situation where the combined e�ect of two or more loci cannot be predicted from the sum of
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their individual single-locus e�ects. This de�nition of epistasis was �rst used by Ronald Fisher in
1918 as "epistacy" [21]. The total genetic variance of a quantitative trait can be partitioned into
components of variance due to single-locus e�ects and gene-gene (epistatic) interactions [17].

Moore further insists on the fact that di�erences in genetical and biological epistasis among in-
dividuals in a population give rise to statistical epistasis [20]. It is entirely possible for genetical and
biological epistasis to occur in the absence of statistical epistasis. This happens when the DNA se-
quence variations and biomolecules are the same for every individual sampled from a population. So,
genetic and biological variation among individuals is crucial for the statistical detection of epistasis.
Statistical epistasis is measured at the level of a population.

An important methodological question is whether statistical evidence of epistasis at the popu-
lation level can be used to infer biological or genetical epistasis in an individual. Conversely, does
biological evidence of epistasis imply that statistical evidence will be found ?

1.1.9 A detailed illustration of epistasis : the color coat of Labrador golden
retriever dogs

A classical example of a biological epistatic interaction is the coat color in Canis lupus familiaris
dogs breed Labrador and Golden retrievers. The coat color of Labrador retrievers can be black, brown
or yellow (gold) as displayed in Figure 1.5. The coat color is primarily controlled by two di�erent
loci : a black/brown bi-allelic locus (B/b) and a bi-allelic gold locus (E/e) called the extension locus.
The black allele (B) is dominant to the brown (b). So, dogs that are heterozygous at this locus will
preferentially have a black coat color. However, expression at this locus also depends upon the dog's
genotype at the gold (extension) locus. Dogs homozygous for the recessive (e) allele at the gold locus
have a golden coat color regardless of their genotype at the black/brown locus. It is said that the
extension (gold) locus masks or is epistatic to the e�ect at the black/brown locus. In the classical
Mendelian dihybridism model, the expected ratio at F2 of a mating in case of 2 independent loci
would be 9/3/3/1. But here, with epistasis, the expected ratio of a mating between two dogs that
are heterozygous at both loci is 9/4/3 (black/golden/brown) as described on Figure 1.6. There is
primarily 3 phenotypes and not 4 as in the classical independent dihybridism cross.

 

Figure 1.5 � Coat color
in Labrador retriever pup-
pies.

 

Figure 1.6 � Recessive epistasis in dihybridism dogs intercrossing.
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Dogs have 39 pairs of chromosomes. It is worth noting that the B/b alleles are basically at a
locus on chromosome 11 of the dog, whereas the extension locus (E/e) is on chromosome 5. This an
example of an epistatic gene interaction between di�erent chromosomes 1.

It is of pedagogical interest to learn the basics of the coat color biochemistry in dogs as it helps
to understand other epistatic e�ects for other phenotypes in other species. It can give insights for
understanding pair wise gene gene interaction underpinning complex diseases.

The coat color of dogs is determined by the relative levels of two pigments : eumelanin, which
can either be brown or black and phaeomelanin which is yellow to orange or red. Both pigments
are generated by metabolism of tyrosine. These two pigments levels depends on the activity of the
enzyme tyrosinase-related protein 1 (TYRP1) whose coding gene is on a locus of chromosome 11
of dogs. This locus has the two alleles (B/b). The B allele is the wild type and dominant. It allows
the normal production of black eumelanin. The b allele is recessive : lacking the TYRP1 protein,
eumelanin does not undergo the �nal biochemical conversion, and is milk chocolate brown rather
than black. A dog that is homozygous recessive for this variant will show the brown color phenotype.
A schematic diagram showing the biochemical pathways producing the pigments is shown on Figure
1.7. In melanocytes, the default pathway produces yellow-red phaeomelanin. Eumelanins are only

 

Figure 1.7 � Schematic synthesis pathway for pigments eumelanin and phaeomealin. Credits :
Everts et al.

made if melanocytes receive speci�c signals from the melanocortin receptor (MC1R) coded by a
gene at the E locus situated on chromosome 5 in dogs. As illustrated on Figure 1.8, the MC1R
protein is a transmembrane protein located on the plasma membrane of the melanocyte. One of
the ligand of the MC1R receptor is the melanocyte stimulating hormone (α −MSH). When the
hormone α −MSH binds to the MC1R (melanocortin 1 receptor), eumelanin is produced. If the
MC1R receptor is defaulted for instance because the protein has not the right con�guration due to a
premature ending of the translation process, the speci�c signals are not triggered and eumelanin will
not be produced. Only phaeomelanin will be present and the dog will exhibit a golden coat. There
are other ligands to the MC1R receptor, like the agouti signaling peptide (ASIP) coded at another
locus, but for the sake of simplicity, we do not develop further the agouti signaling e�ect here.

From a molecular biology perspective, the (e) allele at the extension locus (E locus) is actually
a SNP which results in a stop codon in the gene coding for the melanocortin receptor 1 (MC1R, E
locus). This functional SNP identi�cation was elucidated in 2000 by Everts et al. at the Faculty of
Veterinary Medicine in Utrecht [22] using inverse Polymerase Chain Reaction methods [23]. Compa-
rison of the complete MC1R sequences of a yellow and a black Labrador retriever revealed a single
C → T mutation at nucleotide position 916 in the yellow dog. This transition changed the codon for

1. In humans, there is evidence, in ankylosing spondylitis, of an epistatic e�ect of ERAP1 of chromosome 5 on
HLA-B27 of chromosome 6.
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Figure 1.8 � Schematic showing how the MC1R regulates melanin synthesis. Credits : Everts et al.

arginine at position 305 into a stop codon, resulting in the loss of the evolutionary strongly conserved
12 carboxyterminal amino acid residues. Golden retrievers also appeared to be homozygous for the
mutation. The MC1R gene consist of an open reading frame (ORF) of 951 bp and is located in one
single exon. Since the 916 C → T mutation introduces a premature stop codon in the MC1R gene
and thus a truncated protein, a loss of function is the likely e�ect. Although the deletion of the
12 carboxyterminal amino acids (out of the 317 for the complete functional protein) is relatively
small, an adverse e�ect on the function of the MC1R receptor is nevertheless very likely. In many
G protein-coupled receptors (of which MC1R is a family member), one or two cysteines near the
end of the protein are attached to the membrane. Lacking these cysteines prevent the protein from
properly attaching the melanocyte plasma membrane.

1.1.10 Challenging issues generalizing the dogs coat color illustration

The previous illustration of epistasis through the Labrador golden retriever dogs calls for several
comments. First, it shows that a pairwise gene interaction is not necessarily a reciprocal interaction.
Indeed, the extension locus (E locus) on chromosome 5 for the MC1R receptor masks the expression
of the B/b allele on chromosome 11 but the reciprocal is not true. There is no e�ect of the alleles B/b
(B locus) of chromosome 11 on the expression of the E locus on chromosome 5. This is di�erent from
what statisticians generally mean with interactions as they consider interaction to be a reciprocal
mutual relation.

Second, the rather simple phenotype of coat color in dogs is underpinned by a rather complex
pathway involving more than two genes although the phenotype can be explained simply with only
two bi-allelic loci.

Third, the interaction appears from a regulation involving a transmembrane receptor protein.
This kind of interaction is usual in molecular biology. There are similar high order interaction/regulation
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e�ects in humans in sporadic breast cancer as was described by Ritchie et al [24]. There are also
similar regulatory pathways involving membrane receptors (MHC assembly) in the complex disease
ankylosing spondylitis as is discussed in Evans [25].

Finally, let us assume that we had no prior knowledge of the mechanism underlying the coat color
in dogs and that we would set up a case (golden individual dogs)/control (black and brown individual
dogs) GWAS analysis. We could perhaps �nd an association of cases to a marker in LD with the true
functional mutation of the MC1R gene on chromosome 5 in a single main e�ect analysis but would
most likely not detect a pair wise interaction of the 2 loci involved in coat color, i.e. a SNP1 in the LD
block of TYRP1 on chromosome 11 associated jointly with a SNP2 in the LD block of MC1R on chro-
mosome 5. Indeed, golden color coated individuals (case) and black or brown color coated individuals
(control) both have any combination of B and b alleles at the TYRP1 locus and probably any or no
linkage at all with possible SNP markers. There is no direct association of the B locus to the cases.
Although coat color in dogs is not considered a complex trait, this illustrates the challenge of using
statistical methods at the population level to infer genetical or biological epistasis and it rises the
question of the biological relevance of the discoveries as was already pinpointed earlier by Moore [20].

Finally, in case-control studies the phenotype is correctly or wrongly assumed to be dichotomi-
zed (binary trait). It could be that the phenotype would actually harbor a multinomial outcome
(trichotomized trait as in the golden retriever coat color example), with a third extra category being
blinded from the method of characterisation. The particular experimental setting should carefully
examine all possible hidden outcome and investigators should make sure that the outcome they want
to infer from genotype information is truly binary in a case-control retrospective study.

1.2 Scope and contribution of the thesis

The discovery of genetic and biological epistasis via statistical methods is a big challenge, es-
pecially in the absence of prior hypothesis, as well as the biological relevance of the �ndings. The
reproducibility of experimental settings, statistical methods and tools for epistasis analysis should
be warranted. This motivates the need of simulation data to test the performances and relevance
of the statistical methods and bioinformatics tools that are used. The genomic data have a special
structure which has to be incorporated so that the simulations are as realistic as possible in order to
be eventually useful for inference purposes on real life datasets. Genetic variants are often in linkage
disequilibrium with one another or with the functional allele of interest - the Disease Susceptibi-
lity Locus (DSL). This so called linkage disequilibrium is of paramount importance in the genomic
data structure and biostatisticians must not overlook this characteristic of the whole genome data
structure.

This master thesis addresses the six following research questions.

1. How do you detect a gene-gene interaction related to a complex trait in a retrospective case-
control genome-wide association study ?

2. How the size e�ect of a gene-gene interaction on a disease trait (or phenotype) in a non-fully
penetrant genetic model impacts the sensitivity of the detection ?

3. What is the genetic variability for the case and control population supposed to be homogeneous
(and in Hardy-Weinberg equilibrium) ?

4. How linkage disequilibrium impacts the power of the method ?

5. How is the multiple testing problem taken into account ?
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6. What is the estimated power of the experimental setting in association studies for a given
sample size of cases and controls and for a �xed family wise error rate (FWER) controlling
the multiple testing issue ?

In this Master thesis, we will examine the impact of this inherent correlation between genetic
markers on the inferences that can be made from the statistical analysis conducted in large scale DNA
based gene-gene interaction studies. Assessing quantitatively the impact of linkage disequilibrium
on the power (while controlling for the type I error rate and for a given sample size) of a genome
wide association study, designed to unravel a pairwise gene interaction, is desirable to secure the
reliability of conclusions drawn from such a study.

Di�erent methods exist to detect epistatic e�ects but, in this thesis, we will focus on Model-
based Multifactor Dimensionality Reduction (MB-MDR). The performances of MB-MDR are poorly
documented in the literature. It is the core of this thesis to provide a performance analysis of MB-
MDR based on simulated data where true causal SNPs are known and hidden in simulated datasets
in order to challenge the MB-MDR method and check if the algorithm will pinpoint the hidden
interacting SNPs. It is a fundamental pre-requisite pathway for this method to be used in real
GWAS dataset applications.

We will construct 1200 simulated datasets which re�ects the statistical properties of human
genomic data with as much realism as possible, reproducing linkage disequilibrium patterns, haplo-
type blocks, minor allele frequencies ranges of real complex diseases and epistatic e�ects which are
important for evaluating the performance of the former developed MB-MDR algorithm.

The method will eventually be applied on a real life dataset from the Wellcome Trust Case
Control Consortium on ankylosing spondylitis.



Methods

2.1 Multilocus analysis

In this chapter, the algorithms and methods are presented that are used to detect epistasis with
MB-MDR. How the simulated datasets were prepared and the work�ow to estimate the sensitivity of
MB-MDR is presented. As touched upon in the introduction, the "missing heritability" in GWAS is
expected to be explained, at least partially, by nonlinear interactive e�ects of multiple SNPs, namely
epistasis. Therefore, genome-wide interaction analysis (GWIA) focusing on epistasis detection is our
assigned task now. In this thesis, we focus only on the MB-MDR method to detect SNPs related to
epistatic loci of order two (pairwise interactions).

2.2 MB-MDR Model-based Multifactor Dimensionality Reduction

MB-MDR (Model based Multifactor Dimensionality Reduction) has continuously been develo-
ped from 2011 onwards [5] [26] and its recent ancestor method � MDR (Multifactor Dimensionality
Reduction), was introduced by Ritchie et al. in 2001 [24]. Both are methods for reducing the dimen-
sionality of multilocus genotype information to improve the identi�cation of polymorphism (SNPs)
combinations associated with disease risk. MBR is nonparametric (no hypothesis about the value of
a statistical parameter is made), is model-free (it assumes no particular inheritance genetic model)
and is directly applicable to case-control studies. MB-MDR improved MDR in four ways :

1. MB-MDR can deal with binary trait, continuous trait or survival data (censored data).

2. MB-MDR breaks with cross-validation of MDR and dedicates computing time in permutation-
based multilocus signi�cance assessments of the appropriate association test dependng on the
data at hand (for binary trait, the association test is the χ2 test of independence).

3. MB-MDR handles covariates adjustments (possibly correcting for main e�ects and population
strati�cation) in addition to the interaction e�ect of interest, while controlling type I error and
false positives.

4. MB-MDR recently implemented fast multiple testing correction algorithms to control the
family-wise error rate (FWER). Since version 4.2.2 of the software (MBMDR-4.2.2), the me-
mory usage was made independent of the size of the dataset and the number of permutations
and most importantly, the gammaMAXT algorithm implementation contributed by Van Lishout
et al. speeds up the computing time, still controlling the FWER and with similar power as the
previous versions [27]. With a 256-core computer cluster, a dataset composed of one million
SNPs and 1000 cases and controls can be analysed in less than 24 hours although ∼ 5 1011

pairwise combinations are worked out [27].
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2.2.1 MB-MDR algorithm description for binary traits

Global epistasis test

A set of n genetic factors is selected and their possible multi-factor classes or cells are represented
in a n dimensional space. For n = 2 bi-allelelic loci, there are 9 possible genotype cells in a 3×3 table.
The ratio of the number of cases to the number of controls is estimated in each cell and the cell is
labelled as either high risk (H) if the case-control reaches or exceeds a predetermined threshold (for
example ≥ 1, in MDR) and low risk (L) if it does not reach this threshold. This reduces the original
n−dimensional model to a one dimensional model, i.e. one variable with two classes : high risk and
low risk. The procedure is repeated for each possible n-factor combination and the combinations
that maximizes the case-control ratio of the high risk group are ranked. In MB-MDR, a statistical
χ2 test is carried out to compare the proportion of cases and controls in each cell and a third class
is considered if there are less than 10 observations in a cell or if the null hypothesis of identity of
cases and controls in the cell cannot be rejected. In this case, in MB-MDR, the cell is labelled as
null (0) instead of H or L as illustrated in Figure 2.9 reproduced from Van Lishout PhD thesis [26].
The next step is to determine the tj− statistic for the particular pair of SNPs (SNPrj × SNPlj).

 

Figure 2.9 � MB-MDR 3 × 3 table with risk classi�cation (H/L/O) according to the relative
proportion of cases (left bars in boxes) and controls (right bars in boxes). r and l indices refer to
any SNP taken from the M total number of SNPs and j refers to the jth best ranked pair of SNPs.
Credits : Van Lishout PhD thesis [26].

The 3× 3 table of �gure 2.9 is collapsed in a 2× 3 table where all the three classes are summed up
by cases and controls to obtain a table like Table 2.3.

Table 2.3 � 3× 2 table of disease risk classi�cation (High, Low and 0) by cases and controls for a
particular pair of SNPs.

H L 0

Cases a b c
Controls d e f

The 3 × 2 table is further collapsed in order to conduct two χ2 association tests of the disease
status with the risk classi�cation for each of the two 2× 2 tables to test High risk versus L + 0 on
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the one hand (χ2
1) and Low risk versus H + 0 on the other hand (χ2

2) as tabulated on Tables 2.4 and
2.5. An option of the algorithm also allows to test High risk (H) versus Low (L) on the one hand
and Low risk versus High, excluding the 0 labelled cells. We actually used this last option in our
data analysis (as seen in Code 2a-2 in appendix).

Table 2.4 � 2× 2 table of disease risk classi�cation (High versus Low and 0) by cases and controls
for a particular pair of SNPs.

H L + 0

Cases a b + c
Controls d e + f

Table 2.5 � 2× 2 table of disease risk classi�cation (Low versus High and 0) by cases and controls
for a particular pair of SNPs.

L H + 0

Cases b a + c
Controls e d + f

The resulting tj test statistic is the maximum of the two χ2 tests :

tj = max(χ2
1, χ

2
2) (2.16)

Epistasis test with correction for main e�ects

In the previous section, the basic algorithm was presented to perform a global epistasis test. In
the full extent of MB-MDR, a targeted epistasis test can be done by adjusting for lower-order e�ects
or by adjusting for population substructure. This is the origin of the model based (MB) component
in the name of the MB-MDR method. Correcting for main e�ects prevent false epistasis e�ects. Two
coding schemes are possible : either the additive model or the codominant model. If A is the major
allele and G the minor allele at the locus of interest, the wild type homozygote (AA) is coded 0, the
heterozygote (AG) is coded 1 and the mutant homozygote (GG) is coded 2. In the additive model,
the allele dosage (number of variant alleles in the genotype) increases the disease risk in an additive
way. For the codominant coding scheme for bi-allelic locus, two indicator variables are used : the �rst
indicator variable is set to 1 for the (AG) genotype, 0 otherwise and the second indicator variable
is set to 1 for the (GG) genotype and 0 otherwise. The codominant coding for the two indicators is
respectively 00 for homozygous wild type (AA), 10 for heterozygous (AG) and 01 for homozygous
variant genotype (GG). The sum of the two indicator variables is always 1 when there is one or two
minor alleles in the genotype.

For lower order corrections, a model is �t that adjust the outcome by implementing a generalized
linear regression as detailed in Van Lishout [26].

MB-MDR output

The output that the MB-MDR algorithm produces is a ranked table like Table 2.6. To compute
the p-values, the statistical distribution of the test statistic tj must be known or at least approximated
by the empirical distribution obtained by permutations, considering that under the null, all SNPs
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Table 2.6 � Ranked table of epistatic SNPs pairs in MB-MDR.

Pair MB-MDR p-value
statistic

SNPl1 × SNPr1 t1 p1
. . . . . . . . .

SNPlj × SNPrj tj pj
. . . . . . . . .

SNPln × SNPrn tn pn

pairs are independent and could be permuted with any other SNPs pair. Each line in the MB-MDR
output can be analysed naively by a single hypothesis test.

Actually, a huge number of tests are carried out and the multiple testing issue has to be addressed.
With 500.000, SNPs there are 125 billion pairwise combinations if we examine all pairs exhaustively.

2.2.2 Multiple testing correction procedure in MB-MDR

We aim at testing for the presence of associations between the trait and a huge number of potent
multi-locus interactions. Testing multiple hypotheses can result in an in�ation of the type I error
rate (false positive - rejecting the null given that it is true). Recall that, in practice, if α = 0.05 is
the type I error for one test, if m independent tests are conducted, the probability that no error is
made is (1 − α)m. Hence, the probability that at least one hypothesis will be rejected wrongly is
1− (1−α)m. Suppose we conduct 100 tests, then the probability to reject wrongly at least one test
out of the 100 is 0.994 or 0.634 (for α = 0.05 or 0.01 respectively). We see that when the number
of tests (supposed here to be mutually independent) is huge, it is almost certain that we will reject
wrongly a great number of tests and will declare a large number of false positive. In the Bonferroni
multiple testing adjustment, α is lowered so as to minimize 1 − (1 − α)m. For instance, with 100
tests, α must be set to 0.0005 so that the multiple type I error be less than 0.05.

In GWIS, the number of tests is in the order of million or billion. Of course, because of linkage
disequilibrium, the tests are actually not all independent as tag SNPs are correlated to causal variants
and are mutually correlated among themselves.

The Bonferroni correction for multiple testing is not fully exact because the independence of
tests does not hold and the Bonferroni procedure is too conservative.

We should also keep in mind that minimizing type I error increases type II error (β) : The
sensitivity or power (= 1−β) to reject correctly a null that is really not true decreases if type I error
α is set to lower values. So, being too conservative in type I error will reduce the power to detect an
e�ect, given that there is truly an e�ect.

Generally, there are di�erent methods for adjusting for multiple testing to control two error
rates : the familily-wise error rate (FWER) and the false discovery rate (FDR). Detailed discussions
of FWER and FDR can be found in Westfall and Young [28]. These two types of error measures
are :

Family-wise error rate : probability of at least one type I error across m hypothesis tests.

False-discovery rate : probability of type I errors among the rejected null hypothesis when m
hypothesis tests are conducted.

FDR is less conservative than FWER and we always have FDR ≤ FWER. For that reason, the
MB-MDR algorithm was designed at minimizing FWER or controlling FWER at 5%.
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Free step-down resampling method MaxT

The free step-down resampling method (FSDR), as given by Westfall and Young [28], is a re-
sampling based method that o�ers the advantage to account for underlying unknown correlation
structure among multiple hypotheses. This comes however with a shortcoming of another strong as-
sumption, called the subset pivotability, which may or may not be appropriate in the settings of
interest. It must be mentioned that there is a method, called null unrestricted bootstrap, proposed
by Pollard and Van der Laan in 2004, relaxing the subset pivotability condition [29]. But this algo-
rithm is currently not implemented in MB-MDR. The subset pivotability condition states that the
distribution of test statistics for a subset of true null hypotheses is the same regardless of whether
just this subset is true or the complete null is true.

Under this approach, the individual threshold for α stays at 0.05 but the p-values are adjusted
to account for multiple-testing. Let's denote M0 the unknown subset of true null hypotheses and m0

the size of this subset. Under the complete null, all hypothesis are truly null and we have m0 = m.
Recall that for 1751 SNPs, the number of pairwise combinations is m =

(
1751
2

)
= 1.532.125. For a

dataset containing 106 SNPs, there are m ' 5 · 1011 pairs.

The maxT algorithm starts by computing the test statistics for all pairs of SNPs and sorting
them in decreasing order. The sorted statistics are denoted t1 ≥ t2 ≥ t3 ≥ . . . ≥ tm and refer
to the corresponding pair of SNPs of interest (SNPl1, SNPr1), . . . , (SNPlm, SNPrm). The highest
observed test statistic is t1 and we would like to estimate the probability of observing a maximum
value that is at least as extreme as t1, just by chance, under the null that no pair of SNP is
associated to the trait. Under the complete null, if we permute the a�ection status among the
subjects, recompute the m test statistics, �nd the maximum denoted tb for permutation b, conduct
B such permutations (b ∈ [1, · · · , B]), we can get the empirical distribution of tmax. Then, we
determine what is the probability to have a t statistic equal or more extreme than t1 from this
empirical distribution that we obtained by bootstrapping under the complete null.

In Van Lishout's implementation of maxT [27], the test statistics of allm pairs are calculated but
the adjusted p-values of only the n best pairs are computed, i.e the ones with the n lowest adjusted
p-values. The Van Lishout's implementation of MaxT is summed up hereafter [27] :

1. Compute the test-statistics for all m pairs, but only store the n highest tests values. The result
is a data vector where T0,1 ≥ T0,2 ≥ . . . ≥ T0,n.

2. Initialize a vector p of size n with 1's.

3. Perform B bootstrap replicates (i = 1, . . . , B) :

(a) Generate a random permutation of the trait column.

(b) Compute Ti,1, . . . , Ti,n and store them in a Permutation-i vector.

(c) Compute the maximum Mi of the test-statistics values Ti,n+1, . . . , Ti,m.

(d) Replace Ti,n by Mi if Ti,n < Mi.

(e) Force the monotonicity of the Permutation-i, vector : for j = n− 1, . . . , 1 replace Ti,j by
Ti,j+1 if Ti,j < Ti,j+1.

(f) For each j = 1, . . . , n, if Ti,j ≥ T0,j increment pj by one.

4. Divide all values of vector p by B + 1 to obtain the adjusted p-values vector. Force monotoni-
city : for j = 1, . . . , n− 1, replace pj+1 by pj if pj+1 < pj .

Gamma-MAXT

In the previous MaxT algorithm which computes the adjusted p-values correcting for multiple
testing, the most penalizing algorithmic complexity arises from the step 3(c) which is of the order
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O(Bm). A novel algorithm reducing drastically the computer burden was implemented in MB-
MDR-4.2.2 by Van Lishout [27]. In the previous step 3(c), we are interested in the distribution of
a number of test values overall several SNP-pairs, from which to derive the maximum value Mi.
The novel idea was to note that the test values in [Ti,n+1, . . . , Ti,m] with i > 0, follow a mixture
distribution of a shifted gamma distribution and a Dirac distribution at zero (zero test values arise
in situations for which the MB-MDR test statistics cannot be computed due to the undecisive "O"-
labelled category mentioned before). Instead of searching the maximum in the set [ti,n+1, . . . , ti,m]
directly, it is possible to predict it from the �tted mixed distribution. A sample of size ∼ 106 of
non-zero values su�ces to predict the maximum of the test values in the above set, as it is a tradeo�
between computing time and precision of the prediction. The probability density function to �t is :

Ti ∈ [ti,n+1, . . . , ti,m] ∼ χi (2.17)

fχi(x) = (1− π)δ(x) + π gχi(x)I[x>0] (2.18)

where χi is a random variable returning a value from the set [ti,n+1, . . . , ti,m], I[x>0] is the cha-
racteristic function equals to 1 if x is positive, 0 otherwise and gχi(x) is approximately a shifted
gamma distribution. The main goal is predicting a maximum, we are not interested in �tting the
distribution of gχi(x) on the entire set of strictly positive values. Fitting the tail of the distribution
is su�cient as fully motivated in Van Lishout PhD thesis [26]. The shifted gamma distribution has
three parameters to be estimated from the top 10% of strictly observed positive values taken from
[ti,n+1, . . . , ti,m]. The outcome of the random variable Yi from the set of the strictly positive values
has the cumulative distribution function (CDF) :

FYi
(y) =

γ(k, y−y0θ )

Γ(k)
(2.19)

where γ is the incomplete lower gamma function γ(k, y) =
∫ y
0 t

k−1e−tdt. The three parameters
y0 (location parameter of the shifted gamma), k (shape parameter) and θ (scale parameter) are
estimated from a sample of size 106 of the strictly positive values in [ti,n+1, . . . , ti,m]. This allows the
estimation of the maximum Mi instead of computing it directly. This estimation of Mi replaces the
step 3(c) of the Max-T algorithm and provides faster computing performance for MB-MDR.

2.3 Need of benchmark data

The performances of MB-MDR are poorly documented in the literature. It is the core of this
thesis to carry out a performance analysis of MB-MDR based on simulated data where true causal
SNPS are known and hidden in simulated datasets in order to challenge the MB-MDR method and
check if the algorithm will pinpoint the hidden interacting SNPs. It is a fundamental pre-requisite
pathway for this method to be used in real GWAS dataset applications.

We will construct simulated datasets which re�ects the statistical properties of human genomic
data in as much realism as possible, reproducing linkage disequilibrium patterns, haplotype blocks,
minor allele frequencies ranges of real complex diseases and epistatic e�ects which are important for
evaluating the performance of the methods.

2.4 Simulation methods and algorithms

This section describes a simulation method which belongs to the forward-time simulation family.
There are other simulation methods families falling into four categories, namely : coalescent, forward-
time, resampling andMarkov chain simulators that are described elsewhere [30]. We want to simulate
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genetic samples with realistic patterns of linkage disequilibrium and haplotype blocks. To retain the
complex genetic structure of human populations, the forward-time simulation we implemented has
four steps :

Step 1 First, we chose an initial population of selected markers from a real sample. We selected
two segments of two chromosomes from the 91 unrelated individuals of the GBR population
of HapMap 3. The data were downloaded from the Ensembl repository of the 1000 Genome
project. A unique HapMap subpopulation was chosen to guard from population substructure
or strati�cation issues. The GBR population of HapMap3 was chosen because we will later
discuss the ankylosing spondylitis dataset from the WTCCC2 case-control study that was
mainly composed of individuals with British ancestry. The GRCh37.p13 assembly was taken
and the genotyped data were extracted for the two arbitrarily chosen following segments with
their starting and ending physical positions on the human genome :

� (chr 7 :110200000-110450000) which spans a 250 kbps region with 964 markers (SNPs) at
an average marker distance of 260 bps.

� (chr 8 :91525000-91775000) which spans a 250 kbps region with 787 markers (SNPS) at
an average marker distance of 318 bps.

One SNP (rs28568272 on chr8 at locus position 91652958) had to be removed because it was
not bi-allelic. We restrict ourselves only to bi-allelic markers for reasons of simplicity and
compatibility with PLINK software and with the analysis methods. A total of 1751 bi-allelic
markers with a real LD pattern from this single homogeneous population of 91 individuals from
GBR ancestry (England and Scotland) is now the prepared founder population. The LD pattern
of these two juxtaposed DNA segments is displayed on Figure B.1 in the appendix. The LD
pattern shows interesting features of separate LD blocks of di�erent sizes and LD intensities.
We will hide 2 Disease Susceptibility Loci (DSL1 and DSL2) in 4 di�erent con�gurations into
these two selected segments, as will be explained soon.

Step 2 The algorithm then evolves this population forward in time, subject to possible mutations,
recombinations, natural selection forces and population expansion. The process uses a trajec-
tory simulation method to control the frequency of the disease predisposing alleles (DPA of
the DSL).

Step 3 This step involves a postprocessing rejection-sampling algorithm useful to simulate case-
control samples.

Step 4 The dataset outputs from the previous steps must be formatted appropriately for further
visualization with Haploview or analysis with other softwares like PLINK and MB-MDR, e.g.
convenient .PED and .MAP �le format are prepared.

We repeat the �rst three steps until we have a number of datasets, 100 in this study, that ful�ll
our criteria such as the number of cases-control from a population of cases with given chosen disease
prevalence, speci�ed disease predisposing alleles frequency and user provided penetrance functions
for a binary trait given the genotypes. Multiloci (pairwise) epistasis is also implemented.

A detailed description of the forward-time simulation implementation is given in Peng [31] and
is practically carried out with Python scripts from the simuPOP simulation environment developed
by Peng et al. [32] from 2004 onwards and used by an increasing number of users for population
genetics studies. The simuPOP Python scripting environment is brie�y described in the appendix.

The forward-time simulation algorithm was used in a pioneering work conducted by Grady et al.
in 2011 [33] in producing datasets for a simulation study to test the sensitivity of MDR according
to di�erent levels of LD. In their work, Grady et al. did not use real LD patterns from former
HapMap projects. The HapMap3 data were not yet available in 2011. They simulated their "own"
LD patterns instead. The distribution of LD levels in the HapMap data is more complex than in
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the in silico-made data. They used a software called genomeSIMLA that is not supported anymore
and fails to compile with current versions of C++ compilers. Other softwares exist which implement
real LD pattern samples, like Hapgen2, but cannot implement directly epistatic interaction between
multi-loci. A R package must be used in complement to Hapgen2. There is also epiSIM (epistasis
simulator with a Markov chain) enabling implementation of epistasis model but, again, independent
of real outside datasource with real LD patterns [30].

We wrote a Python script and used the existing classes, attributes, versatile and �exible opera-
tors and methods of the simuPOP environment to produce all the simulated datasets. The relevant
codes (code 1a to 1f) are provided in appendix B.2. In the following subsections, we describe the
implemented algorithms to serve our objective of generating the simulated datasets (case-control po-
pulation) starting from the downloaded initial founder population with realistic patterns of linkage
disequilibrium.

2.4.1 Generating simulated datasets of case-control populations with realistic
pattern of linkage disequilibrium

Demographic model

The initial chosen founding population is small (here 91 unrelated individuals), is considered
isolated and belongs to a single homogeneous subpopulation (extracted from HapMap3 GBR sub-
population) before expansion of a typical human population (around 10.000-15.000 years of 500-750
generations if we assume 20 years per generation). We will expand this population linearly to a
larger population by adding the same number of individuals each year, possibly subject to mutation,
recombination and natural selection. The expanded population size to be reached has been �xed to
10.000 individuals.

Evolving the founder population

During this evolution-expansion, all SNP markers could be mutated according to a symmetric bi-
allelic mutation model with a mutation rate of 10−8 per base pair per generation. At each generation,
parents are chosen at random (random mating) and pass their genotypes to o�spring according to
Mendelian laws. Parental chromosomes can also be recombined according to the �ne-scale genetic
map estimated from the HapMap dataset before one of the recombinants is passed to an o�spring.
If a selection model is speci�ed, parents are chosen with probabilities that are proportional to their
relative �tness values. In our work, we defaulted the mutation rate to zero to make sure that all
alleles stayed bi-allelic. We did not use recombination either, as the Haldane genetic distances of
the SNPs were all set to zero. The selection model only a�ected the two hidden DSL in order to
control the �nal allele frequency of the last generation of the expanded population. Hence, the last
generation of the expanded population can be considered in Hardy-Weinberg equilibrium for all the
SNPs given that the mating was made completely at random.

Control of disease allele frequency

To simulate a genetic disease, we control the frequencies of the disease predisposing allele (DPA)
at the DSL using presimulated allele frequency trajectories. Either a forward-time approach or a
backward-time approach can be applied. If it is assumed that a DPA existed before population
expansion, we simulate the frequency of DPA forward in time until it reaches the present generation.
The simulation starts from the frequency of DPA in the initial population and is restarted if the
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allele frequency at the present generation falls out of the desired range. The simulated trajectory
forward in time over 500 generations is displayed at Figure 2.10 for the 2 loci DSL 1 and DSL 2A
that we choose as functional SNPs to hide in the simulated datasets for the �rst con�guration of LD
block positions (setting A).
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Figure 2.10 � Simulated forward-time trajectory of allele frequency over 500 generations. The blue
line is the trajectory for DSL 2A moving from 0.42 to 0.40 in 500 generations. The orange line is the
trajectory for DSL 1 moving from 0.088 to 0.05. The allele frequencies are for minor alleles at both
loci.

If the mutant is recent (appeared within the last 500 generations), we can simulate from the
frequency of DPA at the current generation backward in time until the allele gets lost. This was not
used in our simulation work.

After the allele frequency trajectories of DPA are simulated, we use a special random mating
scheme to evolve the population forward in time while following the simulated trajectories at the loci
of interest. The allele frequencies of our four selected DSL are tabulated in Table 2.7 in the initial
founder population from the 91 unrelated individuals and at the current generation of the 10.000
individuals expanded population. The current frequencies of the 4 alleles were �xed considering a
realistic common variant-common complex disease assumption and the latter frequencies are used
for calculation of the disease prevalence we want to simulate in the current population with the use
of a penetrance table. The penetrance table will be calculated under a particular genetic model that
will produce the case-control samples that are drawn from the expanded population conditioned on
the genotype. Hence, the right genotype will be statistically associated to the a�ection status.

Sample generation

For the �nal postprocessing step of the simulation, there are two approaches according to whether
we deal with a common disease with enough a�ected individuals in the simulated population or with
a rare disease or if the requested sample size is large and if it is di�cult to draw enough cases in the
simulated population.

To simulate a common disease with enough a�ected individuals in the simulated population, we
can draw samples directly from the population after the a�ection status of each individual has been
determined using a penetrance table that yields the probability that an individual is a�ected with
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Table 2.7 � Allele frequencies of DSL in founder and expanded populations. The �rst allele in each
pair is the minor allele.

Minor allele frequencies p
Founder population Expanded population

91 individuals 10000 individuals
causal SNP alleles

DSL 1 (rs17644404) A/T 0.09 0.05
DSL 2 A (rs10956767) C/A 0.42 0.40
DSL 2 B (rs2073640) T/C 0.33 0.40
DSL 2 C (rs1476427) T/C 0.35 0.40
DSL 2 D (rs112698197) T/C 0.19 0.40

a disease according to his or her genotype. The penetrance table is tabulated in Table 2.8, once the
genetic model of the disease has been �xed (see next section).

For a rare disease, a rejection-sampling algorithm can be used to draw case-control samples : we
choose parents from the simulated population and produce o�spring repeatedly, apply the penetrance
function to determine the a�ection status of each o�spring and continue until enough samples are
collected with the desired number of cases and controls.

The previous steps conserved the LD patterns as can be seen by comparing Figure B.3 in the
appendix after population expansion from the founder population and case-control sample drawing.
The LD pattern displayed with Haploview on Figure B.3 for one of the the 1000 cases-1000 controls
sample is similar to the LD pattern of the initial founder population.

2.4.2 Genetic disease with epistatic loci : DSL1 and DSL2

A genetic disease with two interacting loci is hidden in all simulated case-control datasets follo-
wing the methodology described herafter.

Embedding 2 hidden true causal loci in di�erent LD blocks in four con�gurations with

their own real LD pattern

We �xed 4 settings of gene-gene interaction depending on the position of the epistatic locus (DSL
2) relative to the other locus (DSL 1). In setting A, both loci belong to a common LD block on
chromosome 8 and are 56 kbps apart. In setting B, the second locus (DSL 2 B) is in a di�erent LD
block and 90 kbps appart from DSL 1 but in the middle of a LD block. In setting C, the second locus
(DSL 2 C) is still in another LD block, 132 kbps further apart from DSL 1 but DSL 2 C is lying at
the edge of an LD block. And �nally, in setting D, both loci are on di�erent chromosomes : DSL 2
D is on chromosome 7. All four settings belong to a di�erent LD pattern framework, yet completely
compliant to a real human LD pattern.

2.4.3 Changing the e�ect size : 3 di�erent odds ratios

The model incorporating a gene-gene interaction e�ect is implemented via logistic regression.
The model parameters control the e�ect size of the epistatic e�ect of DSL 1 on DSL 2 in addition
of possible main e�ects of either of the two loci. Let Y be the binary outcome indicating the disease
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status (a�ected or una�ected) of an individual drawn from the current generation of the expanded
population. This outcome is a Bernoulli random variable and if π denotes the probability for an
individual to be a�ected, the model writes :

Y ∼ Bernoulli(π) (2.20)

π = Pr(Y = 1 | g1, g2) (2.21)

logit(π) = β0 + β1 · g1 + β2 · g2 + β3 · g1 · g2 (2.22)

The β3 term accounts for departure from additive main e�ects and measures the intensity of the
interaction term. This last term implements epistasis in the model. Depending on the genotype
coding scheme, a recessive epistasis or a codominant or an additive or a multiplicative allele dosing
epistasis can be modeled.

In ankylosing spondylitis, HLA-B*27 (DSL 1) is epistatic recessive on ERAP1 (DSL 2) and both
loci are bi-allelic causal SNPs. It has been shown that the major allele dosage of DSL 2 is protective
of HLA-B*27 positive subjects [25]. The odds ratio for being a�ected is 2.5 − 3 times lower for
homozygous major allele subjects on DSL 2 (ERAP1) than for homozygous minor allele on DSL 2 but
only for HLA-B*27 positive subjects. In our simulation datasets, we mimick this fact inspired from
ankylosing spondylitis but with a �ne tuning on the e�ect size of this epistatic interaction.

In all our simulation datasets, we implemented the worst case scenario of a purely epistatic e�ect,
i.e. without main e�ects of the two contributing functional loci (β1 = 0, β2 = 0 in equation (2.22)).
Such a scenario is never detected in classical GWAS where only single loci analysis are conducted.

Our setting models a recessive epistatic e�ect of DSL 1 (=rs17644404) on DSL 2 (=rs10956767 in
DSL 2A) : the major allele T of DSL 1 only masks the e�ect of DSL 2 if DSL 1 locus is homozygous
TT. Besides, the minor allele A of DSL 2A has a multiplicative e�ect on the odds ratio of a�ection
status as compared to the baseline which is set for the genotype DSL1/DSL 2A = TT/CC. Each
increase in A allele dosage of DSL 2A multiplies the odds of a�ection status by a factor exp(β3) =
1.65, 2.12, 2.46 in cases where β3 are 0.50, 0.75, 0.90 respectively, if and only if there is at least one
copy of allele A on DSL 1 locus. To implement this model setting, the indicator variables g1 and g2
of equation (2.22) must obey the following rules :

indicator variables :

g1 =


1 if DSL 2A = (CC)

2 if DSL 2A = (CA)

3 if DSL 2A = (AA)

g2 =

{
0 if DSL 1 = (TT)

1 otherwise

We have built these three e�ect sizes in each of the four LD position con�gurations, while
simultaneously considering the DSL allele frequencies values in the current generation, in a way to
mimick a real human disease prevalence similar to the known one of ankylosing spondylitis which
is around p(D) = K = 0.5%1.0%(= 0.005 − 0.010). This constraints the value of β0 = −5 to set
approximatively the correct disease prevalence in the global population.

Table 2.8 shows the penetrance table built from the selected logistic regression parameters that
are used to tune the epistatic e�ect size. In Table 2.8, the values corresponding to a pure epistatic pair
DSL1 ×DSL2A when β3 = 0.90 are tabulated. The three epistatic e�ect sizes that are implemented
in each LD position scenario were provided with the three β3 values : β3 ∈ [0.50, 0.75, 0.90]

Four penetrance tables (times three e�ect sizes), similar to Table 2.8, were built corresponding
to the four LD position con�gurations described on Figures B.1 and B.2 displayed in appendix.
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Table 2.8 � Imposed genotype penetrance table and disease prevalence calculation in the general
population with allele frequencies under assumption of Hardy-Weinberg equilibrium. In all settings,
the minor allele frequency for DSL1 is p = 0.05 and for DSL 2 is p = 0.40. In black : probabilities
of disease given the genotype, values for simulated datasets in setting A (DSL 1 and DSL 2A) with
epistasis e�ect size β3 = 0.90 (see text). In blue : odds ratio with major homozygous (TT) as baseline
in setting A with epistasis e�ect size β3 = 0.90. Note that the prevalence in the general population
with this setting is around 1%.

Genotype Penetrance of genotype Marginal
−−−−−−−−−−−−−−−− penetrance
AA Aa aa
(1 − p)2 2p(1 − p) p2

BB (1 − p)2 p(D|G1) p(D|G2) p(D|G3) Mx(x = 1)
Bb 2p(1 − p) p(D|G4) p(D|G5) p(D|G6) Mx(x = 2)
bb p2 p(D|G7) p(D|G8) p(D|G9) Mx(x = 3)
Marginal My(y = 1) My(y = 2) My(y = 3) p(D) = K
penetrance

DSL 1 AA=TT Aa=TA aa=AA
DSL 2A 0.9025 0.095 0.0025

BB=AA 0.36 0.0067 0.0911 0.0911 0.015
Bb=CA 0.48 0.0067 0.0392 0.0392 0.010
bb=CC 0.16 0.0067 0.0163 0.0163 0.008
Marginal 0.0067 0.054 0.054 p(D) = 0.0113
penetrance

Odds ratio as compared to double
homozygous CC/TT as baseline
AA=TT Aa=TA aa=AA

BB=AA 1.00 14.88 14.88
Bb=CA 1.00 6.05 6.05
bb=CC 1.00 2.46 2.46

The three e�ect sizes that are implemented in all the simulated case-control datasets designed
to assess the power of MB-MDR are displayed on Figure 2.11 instantiated for the �rst LD position
scenario, i.e. DSL1 × DSL2A. The odds ratio to be a�ected by the disease are graphically represen-
ted conditioning on the genotype composition of the two simulated causal DSL that are hidden for
the construction of the case-control datasets. The interpretation of the epistatic e�ect is explained
again in the caption note of Figure 2.11.

2.4.4 Heritabilities associated to the 3 di�erent e�ect sizes

As recalled from the introduction, heritability h2 is the ratio of the genetic variance to the
phenotypic variance and expresses the extent to which phenotypes are determined by the genes.
Heritability is computed according to the following equation and by using the values arrayed in
Table 2.8 for a given e�ect size. Because our model incorporates pure epistatic interaction between
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Figure 2.11 � Odds ratio e�ect sizes conditioned on pure epistatic pairs of loci for a�ection status
association in the simulated case-control datasets. Causal e�ects for DSL 1 and DSL 2A are conditio-
ned on allele A for DSL 1. Note that DSL 2A risk allele A only increases risk for individuals carrying
at least one copy of the DSL 1 risk allele (DSL 1 is epistatic to DSL 2A). The low risk CC/TT
genotype was set as the baseline (OR = 1). The other genotype combinations are coded according
to 2 indicator variables g1, g2 and their product g1× g2. Odds ratio are obtained by exponentiating
the β3 coe�cient of the interaction term from the logistic regression. Error bars : 95% con�dence
intervals of possible odds ratio that are obtained in di�erent simulated case-control samples.

our chosen pair of functional loci, the heritability is meant broad sense here.

h2 =

∑9
i [p(D|Gi) · p(Gi)− p(D)]2

p(D) · (1− p(D))
(2.23)

In our simulation settings, the tree e�ect sizes determine the three di�erent penetrance tables like
Table 2.8 from which the associated broad sense heritabilities are easily calculated as displayed in
Table 2.9. In their pioneering work, Grady et al. [33] used higher simulated values for broad sense

Table 2.9 � Heritabilities associated to e�ect sizes for the epistatic interaction in all simulated
datasets.

Simulated Interaction Heritability
setting β3 h2

E�ect size 1 β3 = 0.90 h2 = 0.083
E�ect size 2 β3 = 0.75 h2 = 0.071
E�ect size 3 β3 = 0.50 h2 = 0.059
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heritability (h2 = 0.05, 0.15, 0.25) of their pure epistatic disease model. In Grady et al. work, the
modeled disease prevalence was not indicated.

2.5 Datasets pre-processing : LD pruning

Before conducting the dataset analysis through the MB-MDR algorithm to detect pairwise SNPs
interaction, a pre-processing may or may not be conducted. The purpose of this pre-processing step
is to reduce the huge number of pairwise SNP combinations. Di�erent approaches are commonly
used in the literature. A �rst approach, known as prioritization, makes use of prior knowledge and
select only SNPs that are supposed to be biologically relevant from prior studies or from prior gene
ontology information. Biofilter is a software tool developed by Ritchie et al. [34] which uses a list
of public biological databases to generate pairwise gene-gene interaction models and allows ∼ 10-fold
reduction of the original marker set without using disease-speci�c information.

Another approach advocating a complete unbiased investigation only relies on the data at hand
and will just remove the redundant tag SNPs. This is where LD pruning comes into play. The
correlation between SNPs (LD disequilibrium) makes the tag SNPs redundant. LD pruning will
�lter out this redundancy. Linkage disequilibrium based SNP pruning (or LD pruning) will generate
a (pruned) smaller subset of SNPs that are more independent from one another. The objective is
to keep just enough SNPs still tagging the causal SNPs but without all the redundancy of all sets
of SNPs that tag the very same causal SNP. A r2 threshold is arbitrarily �xed to remove some of
the SNPs that are correlated. The redundancy reduction gained by LD pruning comes at a price of
possibly loosing true causal SNPs.

The LD pruning removes SNPs that are pairwisely correlated within a sliding window of given
length (50 contiguous SNPs or SNPS in a contiguous DNA length of 50 kbps for instance). To give
a concrete example, a LD pruning threshold of r2 ≤ 0.75 at a window width of 50 SNPs with a step
of 5 would a) consider a window of 50 SNPs, b) calculate LD between each pair of SNPs within
this window, c) remove one of the element of the pair if the LD(r2) is larger than 0.75, d) shift the
window 5 SNPs forward and repeat the procedure until all the original SNP list has been scanned.

In our work, we carried out �ve levels of pruning to check the LD pruning impact on the sensitivity
of the MB-MDR analysis :

� No pruning

� LD pruning at a 0.75 threshold

� LD pruning at a 0.60 threshold

� LD pruning at a 0.50 threshold

� LD pruning at a 0.20 threshold

The window width we chose, after preliminary investigations, is 10 SNPs with a shift step of 2 SNPs.

A side objective of the thesis is to try to recommend a LD pruning threshold that could be used
as a general rule or at least to provide a practical range for such a LD pruning threshold, applicable
in similar settings for homogeneous sub-populations or genome stretches with similar LD patterns.
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2.6 Performance analysis criteria

2.6.1 Sensitivity or power

We are primarily interested in assessing the sensitivity (power) of MB-MDR in detecting the
correct interacting causal pair of SNPs in the di�erent LD block position contexts and for the
di�erent e�ect sizes that were hidden in the simulated datasets.

Because of the correlation of markers between them and with the causal SNPs, it is expected
that the markers (tag SNPs) are able to predict disease status as well as the functional loci ; thus
there is a high probability that any pair of tag-SNPs that are correlated with the functional SNPs
will be selected by MB-MDR as signi�cant. This should result in the blurring of the exact pair in a
larger set of detected signi�cant pairs composed of tag-SNPs. Each element of a pair of tag-SNP is
correlated, i.e. is in LD, with each of the 2 elements of the functional variants. Hence, we will use
two di�erent operational sensitivity de�nitions as performance analysis criteria :

Exact sensitivity : the number of times (number of simulated datasets) out of 100 where the true
causal pair of SNPs is detected signi�cant with MB-MDR at an adjusted p-value ≤ 0.05.

Signal sensitivity : the number of times (number of simulated datasets) out of 100 where any of
the pairs of tag-SNP is detected signi�cant with MB-MDR at an adjusted p-value ≤ 0.05.

The second de�nition of sensitivity, i.e. signal sensitivity, requires to know the tag-SNPs list of each
of the causal SNPs. The tag SNP list also depends on another threshold, the LD(r2) threshold
we �x. The particular results may depend on this threshold and we arbitrarily �x the level of
LD(r2) = 0.20 to determine the tag SNPs list for each causal variant. To assess the impact of this
arbitrary threshold, we also calculated the signal sensitivity with a LD(r2) threshold of 0.45 to
determine the tag SNPs list. As can be seen from table 2.10, this change in threshold will mainly
a�ect the number of tag-SNPs related to DSL 1 : only 2 SNPs are correlated to the causal locus
DSL 1 above LD(r2) = 0.45, while there were 60 of them at LD(r2) = 0.20.

The tag SNP list of each causal DSP that are hidden in the di�erent scenario for the datasets
are stored in speci�c �les obtained from the show-tags PLINK command. We sum up in Table 2.10
the number of tag-SNP of each variant at di�erent values of LD(r2).

The algorithm to compute both the exact sensitivity and the signal sensitivity is implemented in
a customized Python program that we have written and that is further embedded in a job script to
scan the 100 simulated datasets automatically in a particular setting. The speci�cations, functions
and code for this program, called Sensitivity.py , are detailed in appendix B.3.

Table 2.10 � Tag SNPs number associated to causal variants for di�erent LD(r2) values.

Causal Number of tag SNP at LD(r2) value :
SNP r2 = 0.20 r2 = 0.45 r2 = 0.55 r2 = 0.65 r2 = 0.75

DSL 1 60 2 2 1 1
DSL 2 A 115 114 114 111 98
DSL 2 B 110 110 109 107 107
DSL 2 C 81 80 80 78 78
DSL 2 D 76 48 31 31 24
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2.6.2 Family wise error rate and estimation of the minimal proportion of signal
detected SNPs pairs in the ranked MB-MDR output shortlist

The MB-MDR analysis settings were set to control the family wise error rate (FWER) at 5%.
Hence we expect that the MB-MDR output �le will give 5% of false positive SNPs pairs. Considering
that our simulated case-control datasets had 1751 SNPs, the total number of pairwise combinations
is : (

1751

2

)
= 1.532.125 (2.24)

With a FWER of 5%, an estimation of the number of potent false positive SNPs pairs is at least
1.532.125×0, 05 = 76.606. By default, the �rst 1000 best pairs of SNPs are ranked by decreasing test
statistics or increasing adjusted p-values. In the case of setting A, with causal variants DSL 1 and
DSL 2A, we showed that there were 2 and 114 associated tag SNPs to each of the causal variants
respectively, at an LDr2 = 0.45. The number of pairwise combinations of these tag SNPs from each
of the two sets of tag SNPs (Table 2.10) for DSL 1 and DSL 2 A is 2 × 114 = 228. So, it can be
estimated that the expected proportion of true positive signal detection among the false positive is
228

76606 = 3 10−3, meaning that for the 1000 top ranked list, we would detect around 3 pairs of tag
SNPs for the case of setting A by mere chance. With LDr2 = 0.20, the number of pairs would be :
60×115
76606 = 0.09, meaning that we would expect to get 90 pairs of tag SNPs blurred in a set of false
positive detected pairs. This shows that even with strict FWER control, the very large number of
pairwise combination of SNPs will raise a very large number of false positive detected pairs and it
will be di�cult to distinguish the true and false positive results.



Simulation Results and Discussions

3.1 Sensitivity results for the simulated data

The results for the signal sensitivities of MB-MDR to detect the simulated two-locus pure epista-
tic interaction in the di�erent settings, for three implemented e�ect sizes and for the 5 LD pruning
levels are displayed graphically on Figure 3.12 for the subset of tag SNPs that are correlated to the
two epistatic causal SNPs with LD r2 ≥ 0.45 and on Figure 3.13 for the subset of tag SNPs that are
correlated to the two epistatic causal SNPs with LD r2 ≥ 0.20.

The exact sensitivities are displayed on the lower panels on both Figures (they do not depend on
tag-SNPs conditions). The corresponding tabulated results are given in Table C.1 in appendix C.

3.2 Discussions on the sensitivity results of MB-MDR on the simu-
lated data

The sample size in each setting was 1000 cases and 1000 controls.

The family wise error rate (FWER) adopted by default in the MB-MDR algorithm was 0.05.

The exact sensitivity was computed as the number of times out of the 100 simulated datasets
where the true causal pair of SNPs was detected signi�cant with MB-MDR at an adjusted p-value
≤ 0.05. The signal sensitivity was computed as the number of times out of the 100 simulated datasets
where any of the pairs of tag-SNPs was detected signi�cant with MB-MDR at an adjusted p-value
≤ 0.05.

For signal sensitivities, two subsets of tag-SNPs were used : the �rst subset contains all tag-SNPs
with a LD r2 ≥ 0.45 correlation to the causal loci, the second subset contains all tag-SNPs with
a LD r2 ≥ 0.20 correlation to the causal loci. In the second subset (LD r2 ≥ 0.20), the number
of tag-SNPs is larger and it is expected the signal sensitivities will be higher than with the �rst
tag-SNPs subset.

33
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Figure 3.12 � Sensitivities of MB-MDR to detect two-loci pure epistatic interaction in 4 settings at
three e�ect sizes and with di�erent LD pruning levels. Signal sensitivities determined with tag-SNP
subsets at LD r2 ≥ 0.45 with causal SNPs. Signal sensitivities (upper panel) and exact sensitivities
(lower panel) are displayed at di�erent LD pruning thresholds (unpruned data or LD pruning at
0.75, 0.60, 0.50 and 0.20).
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Figure 3.13 � Sensitivities of MB-MDR to detect two-loci pure epistatic interaction in 4 settings at
three e�ect sizes and with di�erent LD pruning levels. Signal sensitivities determined with tag-SNP
subsets at LD r2 ≥ 0.20 with causal SNPs. Signal sensitivities (upper panel) and exact sensitivities
(lower panel) are displayed at di�erent LD pruning thresholds (unpruned data or LD pruning at
0.75, 0.60, 0.50 and 0.20).
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The sensitivity results call for the following comments and discussions :

1. In all settings, the signal sensitivity is always higher than the exact sensitivity. This is obviously
expected and is a bene�t of linkage disequilibrium on epistasis detection.

2. The exact sensitivities are in the range 0.2 - 0.7 meaning that the probability to detect an
epistatic e�ect between the two true causal SNPs is generally small. A direct detection will
most often prove to be disappointing.

3. The higher power in detecting the true causal SNPs obviously supposes no LD pruning pre-
processing of the data.

4. The exact sensitivities appear to be highly dependent on the LD-patterns in which the causal
loci are hidden. In setting C (DSL 1 × DSL 2C), the DSL 2C causal SNP is at the edge of
an LD block (see Figure B.2 in appendix B) and this setting appears to be more di�cult to
detect. Even the signal sensitivities in this setting C are lower than for the other LD patterns.

5. The exact sensitivities are largely decreased when LD pruning is applied on the data. The
true causal SNP pairs are most often removed from the data by pruning the data prior to the
analysis with MB-MDR. It should be noticed however, that the exact sensitivity is not reduced
to zero after LD pruning in the case where the LD blocks are on separate chromosomes (setting
D, see Figure B.1 in appendix B) or when the causal loci are in the middle of separate large
LD blocks (setting B, see Figure B.2).

6. Except for setting B (DSL 1 × DSL 2 B), the exact sensitivities are not conclusively dependent
on the e�ect sizes of the pure epistatic interaction which were �xed in the simulated datasets.
In setting B, the power to detect the exact causal epistatic variants increases with the e�ect
size from 0.41 to 0.54 when β3 moves from 0.50 to 0.90 for the unpruned data. A moderate
LD pruning at LD r2 = 0.75 increases further the exact sensitivity from 0.44 to 0.64 when β3
moves from 0.50 to 0.90.

7. The signal sensitivities are not conclusively dependent on the e�ect sizes. A small pure epi-
static e�ect is detected indirectly as well as a higher e�ect. The tag-SNP markers correlated
to the true causal loci are helpful for the interaction detection. Again a bene�t of linkage
disequilibrium.

8. In all settings, LD pruning increases the signal sensitivity as compared to no pruning at all.
A proposed explanation is that the SNP redundancy due to LD is partially removed and this
removes a higher proportion of false positive blurring the tagging-SNPs detected pairs that are
genuinely positive.

9. For all settings (A, B, C and D) and for the signal sensitivity calculated with the largest tag-
SNP subset (retaining tag-SNPs correlated to the causal SNPs above LD r2 = 0.20), there
is not much di�erence in signal sensitivity achieved after pruning, whether the LD pruning is
done at r2 = 0.75, 0.60 or 0.50. The signal sensitivities were quite good and always larger than
0.70 in setting C (with DSL 2 C at the edge of an LD block) and even larger than 0.90 in
settings A, B and D.

10. Pre-processing the data at a very low LD pruning of 0.20, decreases the signal sensitivities as
compared to more conservative LD-pruning thresholds in the range 0.50− 0.75.

11. Comparing Figure 3.13 with Figure 3.12 shows that the tag-SNPs LD conditions interfere
with the LD pruning data pre-processing conditions. The tag-SNP conditions used to build
the subset of tag-SNPs for indirect (signal) detection of the two causal loci interaction should
be kept below the LD pruning conditions. Figure 3.12 shows that a tag r2 ≥ 0.45 and a
LD pruning at r2 = 0.20 threshold decreases the signal sensitivities as compared to Figure
3.13, where the tag r2 ≥ 0.20 (see the red dots for signal sensitivity panels on both Figures).
Obviously, pruning the data at a lower threshold than the one used for the subset of tag-SNPs
is not recommended.



Real life data : Ankylosing spondylitis

4.1 Ankylosing spondylitis

Ankylosing spondylitis (AS) is a common form of in�ammatory arthritis predominantly a�ecting
the spine and the pelvis that occurs in approximately 5 out of 1.000 adults of European descent
[25]. Men are a�ected 2-3 times more frequently than women. AS starts by in�ammation involving
the attachments of tendons and ligaments to bone, followed by bone formation, leading to fusion
(ankylosing) of the a�ected joints. AS is considered a dysimmune disease, meaning that it could be
triggered by a previous viral or bacterial infection of the digestive tract (e.g. Shigella sp.) and that
antigen molecular mimicry 2 eventually occurs that misleads the immune response against speci�c
tissues. The current therapeutic treatments for AS include anti-TNF-a, anti-IL-17, anti-IL-12/23
(antagonist agents) and non-steroid-anti-in�ammatory drugs [35].

HLAs, human leucocyte antigens, are human major histocompatibility complex (MHC) proteins
(see [36]). The human MHC proteins are called human leucocyte antigens (HLA) because they were
discovered as antigens of leucocytes that could be identi�ed with speci�c antibodies. The MHC
locus contains two sets of highly polymorphic genes, called the class I and class II MHC genes, on
chromosome 6, encoding the class I and class II MHC molecules that display antigenic peptides to T
cell (involved in cell mediated immune response). The total number of HLA alleles in the population
is estimated to be more than 5000, making the MHC genes the most polymorphic of all genes in
mammals.

HLA-B (as well as HLA-A and HLA-C) alleles belong to the MHC class I coding region. Class
I MHC molecules are part of complex protein assemblies which speci�cally bind to a single antigen
peptide (made of 5 to 11 amino-acid residues) and which can be recognized by CD-8+ T lymphocytes
(CTL cytotoxic T lymphocytes) by a binding mechanism that involves simultaneously two T-cell
receptors : one receptor for the conserved chain of the MHC class I molecule (recognized only by
CD8-T cells) and one receptor for the speci�c antigen peptide bound on the groove (cleft) of the MHC
class I protein assembly. The MHC molecule biological function is to display the peptides derived
from protein antigens for recognition by T cells. The MHC class I molecules along with its antigen
peptide and its CD-8 recognition site are expressed on the outer surface of antigen presenting cells
(APC). All nucleated cells can express MHC class I proteins ; while only dendritic cells, macrophages
and B-cells can express MHC class II proteins.

The assembly of newly synthesized MHC class I molecule with the antigen processed peptide is
built in the endoplasmic reticulum (ER) in the APC maturing cell by a sophisticated process fully
detailed in Abbas et al., chap. 3, p.64 [36].

Ankylosing spondylitis is strongly associated with a variant called HLA-B*27. Only 1 − 5% of
HLA-B*27 positive individuals develop ankylosing spondylitis ; it is clearly not su�cient alone to

2. Molecular mimicry : cross-reactions between microbial and self-antigens.
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cause disease [37]. HLA-B*27 allele is present in 95% of Caucasian patients but only in 50% of
African-American patients, showing strong variation with ethnicity [38].

The HLA-B*27 alleles are coding for MHC class I molecular variants in the �oor groove (cleft)
binding region of the antigen peptide (peptide with 5-11 amino-acid residues derived from protein
antigens).

In 2011, Evans et al. [25] performed a genome-wide association study, as part of the Wellcome
Trust Case Control Consortium 2 (WTCCC2), of 1.788 British and Australian a�ected individuals
(cases) and 4.799 controls of European ancestry.

As part of the results of this and other similar studies, it was found that variants of the gene ERAP1
interact with HLA-B*27 to a�ect disease susceptibility, one of the �rst con�rmed example of gene-gene
interaction seen in humans. For individuals who carry HLA-B*27, their risk of developing ankylosing
spondylitis decreases by a factor of four if they are homozygous for the protective variants of ERAP1
which lies on chromosome 5. Endoplasmic reticulum aminopeptidase 1 (ERAP1)'s main function is
to trim peptides in the endoplasmic reticulum (ER) to optimal length for binding to MHC class I
molecules on antigen-presenting cells for subsequent interaction with CD8+ T cells. This association
of ERAP1 to AS has so far uniquely been found in HLA-B*27-positive subjects. These �ndings that
ERAP1 variants in�uence risk of disease in HLA-B*27 positive, but not negative individuals, strongly
support the notion that both these molecules act in the same biological pathway (MHC class I
antigen presentation pathway) to a�ect disease susceptibility. The suggested mechanism to explain
the genetic epistasis e�ect observed with AS is that a ERAP1 loss of function is protecting against
HLA-B*27 associated AS [37].

From epidemiological data, it has been shown that susceptibility to AS is a�ected by several
other genes within and outside the MHC : 26 risk loci outside the MHC have been identi�ed by
genome-wide association studies so far [37].

4.2 Dataset obtained from theWellcome Trust Case Control Consor-
tium

4.2.1 Dataset description

The WTCCC2 dataset on ankylosing spondylitis (AS) included a total of 6.587 unrelated indi-
viduals (1.788 AS a�ected cases and 4.799 matched controls) and 487.780 genotyped SNPs available
on 22 autosomal chromosomes. Information about sex chromosomes were not available. The SNP
genotyping chips used were Illumina 660W-quad chips for the cases and Illumina Human 1.2M-Duo
chips for the controls. Although according to the project description, imputation and basic quality
controls have been done beforehand, we performed additional basic quality controls to ensure the va-
lidity of important assumptions regarding the data (like missingness �ltering, minor allele frequency
checks, conformance with Hardy-Weinberg equilibrium, and absence of population substructure).
The phenotype is the disease status (binary trait : una�ected=1 or a�ected=2, missing=0 have been
�ltered out beforehand). No covariate were available except for gender.

Dataset structure

The GIGA approved access to WTCCC2 dataset [39] was composed of two �les :

AS_NBS_58C_CH1_to_22_NatureGen.ped : PLINK formatted .PED �le with n = 6.587 rows
(individuals) and p = 6 + 487.780 × 2 columns (SNPs). Note that we have p � n featuring
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very high dimensionality. Column 1 = Family ID, Column 2 = Individual ID, Column 3 and
4 father and mother (not relevant here), Column 5 = Gender (0 = unspeci�ed, 1 = male, 2 =
female), Column 6 = Phenotype (0 = missing, 1 = una�ected, 2 = a�ected), Column 7+8 =
genotype pair at SNP1 (one column for each allele : 1 codes for the minor allele, 2 codes for
the major allele), and all such genotype pairs for all the 487.780 SNPs.

AS_NBS_58C_CH1_to_22_NatureGen.map : PLINK formatted .MAP �le with genomic infor-
mation about the SNPs : column 1 = chromosome, column 2 = SNP id, column 3 = genetic
distance (in Morgan units), column 4 = physical base pair position (in bp units).

The only available covariate is GENDER. The 2 x 2 table case/control by gender in the setting is
tabulated in Table 4.11 :

Table 4.11 � WTCCC2 AS study : case-control by gender

Gender

Males Females Unspeci�ed Total

Cases 976 498 314 1.788
(66, 2%) (33, 8%)

Controls 2.433 2.366 4.799
(50, 7%) (49, 3%)

Column Total 3.409 2.864 314 6.587

4.3 Statistical analysis methods and strategy

The PLINK and MB-MDR codes implementing the analysis are given in appendix B.5.

4.3.1 Quality control

Missingness �ltering

No individuals in the dataset had missing phenotype. But 314 individuals have unspeci�ed gender.
We checked for the genotyping success rate of each SNP at a level of 90% : if more than 10% of
missingness was observed for a particular SNP, the SNP was removed from the analysis. We also
made sure that SNPs with minor allele frequency (MAF) less than 1% were excluded and this was
already the case in the provided dataset.

Hardy-Weinberg test and �ltering

In addition, we checked for SNPs that failed the Hardy-Weinberg test at P ≤ 5 ·10−15, departing
from the Hardy-Weinberg equilibrium. No SNP were found in Hardy-Weinberg disequilibrium in the
dataset.
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Population substructure

We examined the data for population substructure by multidimensional scaling (MDS) or prin-
cipal component analysis (PCA). Both methods provide visual means of identifying population
substructure. The aim of PCA is to identify k (k < p) linear combinations of the data, called the
principal components, that capture as much overall variability as possible, where p is the number
of variables (the SNPs in our setting). Multidimensional scaling (MDS) �ts the data into a lower
dimensional space such that the pairwise distances between individuals are similar to the original
distances in the higher dimensional space. MDS is mathematically equivalent to PCA if the distance
is de�ned as Euclidian in MDS. For a given individual, each SNP is represented by the number of
variant (minor allele number) for the 2 homologs at the given SNP locus. The similarity between two
individuals is de�ned as the Euclidean distance between the two respective vectors of data. From
the similarity matrix, the PCA can be calculated and/or the MDS. PLINK was used for MDS and
cases versus controls were plotted with R, as well as females versus males. In PLINK the distance
can be measured either as the proportion of IBS (identical by state) shared alleles between any two
subjects or as a distance (1 − IBS = proportion of unshared alleles). The following approach has
been followed to investigate the potent population substructure :

Genome-wide SNPs subset approach All the SNPs in the dataset were LD-pruned at r2 = 0.03
meaning that all pairs of SNPs in LD with a r2 ≥ 0.03 were removed for further analysis. This
very strict LD-pruning leave only a subset of SNPs that are almost stochastically independent
from one another. From the 487780 SNPs before pruning, only 22861 were left in the subset for
the analysis. These left SNPs are lying all across the genome on the 22 autosomes ; that is why
it is still considered a genome-wide subset of SNPs. MDS is conducted on this reduced SNPs
subset (p = 22861). The graphs of the �rst 2 PC (C1 and C2) calculated from the distance
covariance matrix are presented on �gure D.1 in appendix D.

The visual inspection of the graph of Figure D.1 for the principal components does not indicate any
obvious substructure pattern.

The Genomic in�ation factor (GIF) calculated for the genomic control analysis, and the mean chi-
squared statistic (that should be 1 under the null that there is no strati�cation) were GIF = 1.04585
and χ2 = 1.06254 respectively. These values suggest that no very strong strati�cation exists. So, the
absence of population substructure is reasonable in the WTCCC2 dataset on ankylosing splondylitis.

4.3.2 Single Loci Association Analysis

As ankylosing spondylitis a�ection status has been known to be strongly associated to the
HLA-B*27 genotype since 1974, we carried out allelic association tests for polymorphic nucleotides
(SNPs) in the 3 Mbps region of chromosome 6 around the HLA-B locus which spans a 3316 bps region
between position 31,353,872 and 31,357,187 bp (UCSC GRCh38/h38 web repository) 3. Chromosome
6 is 171 Mbps in length ; so the investigated region is only 1.75% of the total length of chr 6. The
investigated 3 Mbps region was not LD pruned and contains 946 SNPs (SNPs density of about 1
SNP per 3150 bps) in the AS dataset.

The allele test was conducted on each of the 946 SNPs (single locus analysis) of this genomic
region and the Benjamini-Hochberg adjustment was used to control for false discovery rate due to
multiple testing. The adjusted p-values (i.e. minus their decimal logarithms) are plotted against the
SNP bp position in a Manhattan plot displayed on Figure D.2 as seen in appendix D. The 30 most

3. In the AS dataset, the bps positions of chromosome 6 are shifted 76005 bps to the right of the positions referenced
in GRCh38/h38 UCSC human genome repository.
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signi�cant genetic markers are highlighted as red triangles. The red and blue marks refer to the
SNPs showing linkage disequilibrium at LD r2 ≥ 0.50 with the 30 most signi�cants markers and
the green bars refer to the markers that are in LD r2 ≥ 0.20 with the red labelled most signi�cant
markers associated to the a�ection status.

The single polymorphic nucleotide rs2523608 is in the HLA-B coding region. The rs2523554 is
7kb centromeric to the HLA-B region. The Manhattan plot shows that at least 30 SNPs are most
signi�cantly strongly associated to ankylosing spondylitis a�ection status through linkage disequi-
librium with possible unknown causal variant(s) around or in the HLA-B locus. Almost all these 30
most signi�cant SNPs are in physical positions close to the HLA-B locus, at a distance shorter than
±300 kb around the HLA-B locus. The Manhattan plot shows that the genomic region with the SNPs
associated with the AS a�ection status and in linkage disequilibrium together spans around 600
kbps. This region is interestingly centered on the HLA-B locus.

The list of these 30 SNPs is given in Table D.3 in appendix D along with their physical positions,
allele test statistics and their FDR Benjamini-Hochberg adjusted p-values for multiple testing.

4.3.3 Multiple loci Association Analysis

HLA-B*27 of chromosome 6 is known to be epistatic on ERAP1 gene on chromosome 5 [25]. The
questions we now address here are :

� Does MB-MDR detect any interaction between markers from the HLA-B region of chromosome
6 and markers from chromosome 5 ?

� What is the best set of marker candidates of chr 5 found to be in interaction with the markers
signi�cantly associated to AS of chromosome 6 in the region of HLA-B*27 locus ?

� Is this detection or subset list of markers in�uenced by the LD pruning levels consistent with
the results of the simulation results we obtained in the previous chapter ?

� Are the detected markers (if any) in linkage disequilibrium at physical positions close to the
ERAP1 locus of chromosome 5 ?

The multiple loci analysis is limited to all the SNPs of chromosome 5 (30 723 SNPs) and to the
3 Mbps portion of chromosome 6 centered on the HLA-B locus (946 SNPs). Those two DNA region
were merged in a single �le before analysis (31.669 SNPs). The subset of the best 30 SNPs and in
LD r2 ≥ 0.50 around the HLA-B locus of chromosome 6 that are associated to AS a�ection status
has been determined and is recorded (best tag SNP list for HLA-B causal variant to the a�ection
status on chr 6). A subset of SNPs that are in linkage disequilibrium with the ERAP1 locus (rs30187,
bp=96150086) at a LD r2 ≥ 0.20 is also recorded and contains 22 SNPs (tag SNP list for ERAP1 on
chr 5).

Four levels of LD pruning were carried out on the merged �le of chromosome 5 and HLA-B 3Mbps
region of chromosome 6 :

� no pruning

� pruning at LDr2 = 0.75

� pruning at LDr2 = 0.50

� pruning at LDr2 = 0.20

The numbers of the remaining SNPs after the di�erent levels of pruning are given in table D.4 in
the appendix.

The MB-MDR algorithm was processed on each of the LD pruned �le.
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The detected SNPs pairs (candidate epistatic pairs) were screened for the belonging of one of
their marker to the HLA-B tag SNPs'subset along with (or not) the belonging of the second marker
to the ERAP1 tag SNPs'subset. The results are graphically displayed on Figure D.3 in the appendix
D.3 for the LDr2 = 0.50 pruned �le (similar graphs with other pruning levels were also obtained
but not shown here). Figure D.3 displays all the SNPs on chromosome 5 reordered by increasing
base pair position. The blue triangles show the SNPs on chromosome 5 that were found as positive
candidate markers interacting with the best HLA-B tag SNPs of chromosome 6. The red triangles
are the SNPs on chromosome 5 that are found positive candidates marker interacting with the
best HLA-B tag SNPs causal variant of chromosome 6 while simultaneously being in LD r2 ≥ 0.20
with ERAP1 marker. The position of ERAP1 locus is shown on the Figure. From the 30.723 SNPs of
chromosome 5 before pruning, 13.798 SNPs remain after LD-pruning at r2 = 0.50, of which 4.541
are found in interacting pairs by MB-MDR with the 30 best HLA-B tagging markers of chromosome
6 associated to a�ection status and 3 of them are tagging ERAP1 locus of chromosome 5.

We see that the SNPs obtained as interacting candidates contains 3 markers around the ERAP1

locus : SNPs rs2042381, rs149313, and rs34753. The chromosome 6 paired HLA-B tagged SNPs were
rs3868542, rs1841, rs1841 respectively. Interestingly, the highest obtained chi-squared statistic cor-
responds to the SNP rs2042381 tagging the ERAP1 locus. But this result is drown in a very large
number of marker candidates that are uniformly distributed across chromosome 5 and are hypothe-
tically false positive.

Without LD-pruning, two SNPs were found as HLA-B locus interacting candidates tagging the
ERAP1 locus : rs152468, rs 469783. The chromosome 6 paired HLA-B tagged SNP was rs4495304. 3.502
hypothetically interacting candidates were also found all across chromosome 5.

At a LD-pruning r2 = 0.75, four SNPs were found as HLA-B locus interacting candidates tagging
the ERAP1 locus : rs149313, rs28081, rs469783, rs152468. The chromosome 6 paired HLA-B tagged SNP
was rs2233984. 4.519 hypothetically interacting candidates were also found all across chromosome 5.

At a LD-pruning r2 = 0.20, three SNPs were found as HLA-B locus interacting candidates tagging
the ERAP1 locus : rs41135, rs28096, rs11748795. The chromosome 6 paired HLA-B tagged SNP was
rs38685542. 4.863 hypothetically interacting candidates were also found all across chromosome 5.

There is no way to exclude the risk of false positive results in the detected interaction. This is the
drawback of the huge number of pairwise markers combination contributing to a very large number
of multiple testing. Controlling the FWER even more tightly, still gives an absolute value for the
expected number of false positive which amounts to the thousands.

The questions stated in the beginning of the section are addressed and the summary answers
are :

� MB-MDR detect from 3502 to 4813 markers of chromosome 5 that are hypothetically interac-
ting with HLA-B locus tagging SNPs of chromosome 6 best associated to the a�ection status
of ankylosing spondylitis.

� The subset list of markers increases with the level of LD-pruning consistent with the previous
chapter results : with no LD-pruning, the number of positive �ndings were 3.502 and increases
to 4.519, 4.541, 4.863 with increasing the LD-pruning level from LD r2 = 0.75, r2 = 0.50 and
r2 = 0.20 respectively. But whatever the pruning level, only from 2 to 4 pairs of SNPs are
detected that are both tagging the ERAP1 and HLA-B locus which are the true causal interacting
pair known from [25]. The detected epistatic pairs are not the same across the LD-pruning
levels.

� There is a risk of false positive results in the detected interacting pairs.



Discussions and Conclusions

In this master thesis we studied genetic and biological epistasis via a non-parametric and model
free statistical method, MB-MDR (Model based multi-factor dimensionality reduction), applied on
case-control genome wide association studies. This method advocates a complete unbiased approach
as no prior hypothesis on the molecular biological interaction of epistasis is taken and no prior
selection of the genetic loci involved is retained. The only required assumptions were that all loci
are bi-allelic and that the interactions are of order 2 (pairwise interaction).

Biological genetic epistasis is the situation in which an allele at a locus masks the e�ect of another
allele at another locus. Biological epistasis occurs at the level of an individual. Statistical epistasis
is a pairwise loci association to an a�ection status measured at a population level in a retrospective
case-control study. Linkage disequilibrium (the non random association of an allele at a locus to
another allele at another close locus) is confounding gene-gene interaction.

The primary objectives of our study was to investigate the performances of MB-MDR in detec-
ting gene-gene interaction on a genome wide basis and the impact of correlated markers on these
performances.

In our study, we built 1200 simulated case-control datasets, with sample size 1000 cases and 1000
controls, from a homogeneous population (without population substructure) in which 2 common
variants causal loci were hidden in 4 linkage disequilibrium (LD) block settings, mimicking real
human LD patterns, associated to a common disease similar to the real life ankylosing spondylitis
disease. Penetrance tables were tuned upfront by a logistic regression model with 3 e�ect sizes for a
pure epistatic interaction between the 2 known hidden loci with chosen minor allele frequencies of
0.40 for DSL2 and 0.05 for DSL1.

It was our main contribution to show from the 1200 simulated case-control datasets that linkage
disequilibrium pattern in�uences both the direct and signal sensitivity of the detection by MB-MDR.
The worst case scenario being when one of the causal locus is at the edge of a LD block (setting C).
The exact and signal sensitivities of MB-MDR were not found conclusively dependent on the e�ect
sizes in our simulated settings. LD-pruning at a level between LD r2 = 0.50−0.75 was found to have
a positive e�ect on the signal sensitivity but obviously not on the exact sensitivity of MB-MDR.

Controlling for FWER at 0.05, MB-MDR analysis of SNP marker pairs in epistasis for both
the simulated datasets and the real life ankylosing spondylitis dataset gave a very large number of
hypothetically false positive results due to the multiple testing issue arising from the huge number
of pairwise combination of marker epistatic candidates.

From a fundamental point of view, the statement by Moore [4] still holds as a conclusion of our
work : biological evidence of genetic epistasis does not imply that statistical evidence will be easily
found. Although the computational burden had been solved in previous works by e�cient algorithms
like gammaMAX in MB-MDR [27], the main hurdle to be encountered remains the multiple testing issue
that is ampli�ed by the huge number of pairwise combination of the markers and giving rise to a
very large expected number of false positive results, blurring true epistatic signals.
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AppendixA

Softwares

A.1 UNIX/Linux Environment and Multiple Core Resources

It is an advice for any researchers planning on performing many large-scale analysis to look into
adopting a Linux environment. In the framework of this Master thesis, I did the conversion from
Windows to Linux myself. Unix/Linux environment is a hub for shell scripting and submitting jobs
to multiple core resources. Processing 1200 datasets at 4 di�erent LD pruning levels and working
out MB-MDR on these datasets or on the ankylosing spondylitis dataset is computer intensive and
results in a large computer burden. Most of the UNIX written jobs were submitted on the SEGI
multiple core platform. On this platform, 8 nodes were available (4 nodes with a 512 GB RAM/node
with 24 cores/node and 4 nodes with 40 cores/node (4GB/core). The allocated maximum CPU time
for running the jobs was between 4 hours and 24 hours.

A.2 Haploview 4.1

Haploview is a software package that provides computation of linkage disequilibrium statistics
and population haplotype patterns from primary genotype data in a visually appealing and interac-
tive interface.

Haploview was developed by Barrett et al. in 2005 [40], is written entirely in Java, which means it
is usable on any platform with a Java compiler. URL : http ://www.broad.mit.edu/mpg/haploview

Haploview accepts input in a variety of formats, e.g. .PED and .MAP �les interfaced from PLINK.
It can also accept datasets from the .vcf format (variant calling format) after conversion to PLINK
format with the vcftools package. This allows to download 1000 Genome Project genotype data
and visualize them using Haploview. Haploview can only process with bi-allelic variants. Thus,
�les with multi-allelic variant have to be �ltered �rst with vcftools. Haploview generates marker
quality statistics, LD information, haplotype blocks, population haplotype frequency and single
marker association statistics, check for conformance with Hardy-Weinberg equilibrium, percentage
of individuals successfully genotyped for that marker. The graphical displayed information can be
exported to a PNG for use in publications.

A.3 Hapgen2 2.0.2

HAPGEN2 is a free, open-source simulation toolset, based on resampling algorithm of known ha-
plotypes that can produce patterns of linkage desiquilibrium (LD), which mimic those in real data,
for simulating multiple disease SNPs on the same chromosome.
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HAPGEN2 was developed by Su Z, Marchini J and Donelly P in 2011 [41], is written in C++,
can run as a stand alone tool from the command line or via scripting in UNIX/Linux environment.
URL : http ://www.stats.ox.ac.uk/ marchini/software/gwas/gwas.html.

HAPGEN2 helps to prototype new methods for statistical analysis and to examine the power of
di�erent experimental designs. The traditional approach of simulating a population forwards (like
GenomeSimla, see [33]) or backwards in time ignore the large amount of observed genetic data that are
now available (1000 Genome Project) which can provide real LD patterns. Given a reference panel of
haplotypes, the method produces a sample of haplotypes with patterns of LD similar to those in the
reference panel. The user can specify the risk allele and heterozygote and homozygote relative risks.
In HAPGEN2 multiple-associated loci can be simulated on the same chromosome. HAPGEN2 can
only simulate independent disease SNPs. However, the function simulateDiscretePhenotypes in
the R package SimulatePhenotypes can simulate phenotype data under a multiple-SNP interaction
disease model. Thus, one can run HAPGEN2 under the null (by setting the e�ects sizes to 1.0 for all
SNPs), then load the simulated data into R and pass it to the function to simulate the phenotype
data.

A.4 simuPOP 1.1.8.3

simuPOP is a free, open source, forward-time population genetics simulation environment.

simuPOP was developed by Peng B et.al starting in 2005 [32]. URL : http ://simupop.sourceforge.net,
distributed under GPL licence. A very complete user guide of simuPOP has been regularly updated
from 2005 ownwards. The last version was completed in January 2016.

The core of simuPOP is a scripting language written in Python that provides a large number of
objects and functions to manipulate populations, and a mechanism to evolve populations forward in
time. A large number (70) of built-in scripts are provided that perform simulations ranging from the
implementation of basic population genetics models to generating datasets under complex scenario.
The produced datasets can further be processed with any other tool to examine the power of methods
of interest for a particular statistical analysis.

simuPOP can incorporate constraints on the �nal evolved populations such as allele frequencies or
penetrance functions for a phenotype given the genotype or prevalence of a given phenotype in the
current population. It can implement simulations forward in time of realistic samples incorporating
real linkage disequilibrium patterns. Disease susceptibility multi-loci interactions can be included
within or between LD blocks.

A.5 PLINK 1.07

PLINK is a free, open-source whole genome association analysis toolset, designed to perform a
range of basic, large-scale analyses in a computationally e�cient manner.

PLINK was developed by Purcell et al. in 2007 [42], is written in C/C++, can run as a stand
alone tool from the command line or via scripting in UNIX/Linux environment.
URL : http ://zzz.bwh.harvard.edu/plink/

The focus of PLINK is purely on analysis of genotype/phenotype data and addresses data mana-
gement, summary statistics for quality control (genotyping rate, Hardy-Weinberg equilibrium test,
minor allele frequency calculation), population strati�cation detection, basic association testing for
case/control (allele test, Fisher's exact test, Cochran-Armitage trend test), linkage disequilibrium
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calculation, haplotype tests, epistasis assessment based on logistic regression model to cite but a few
of the toolset.

A.6 MB-MDR 4.4.1 or 4.4.2

MB-MDR 4.4.1 is a free program designed to perform model-based multi-factor dimensionality
reduction in order to detect multiple sets of signi�cant gene-gene and or gene-environment associa-
tions in relation to a trait of interest, while e�ciently controlling type I error rates. The trait can be
expressed either on binary or continuous scale, or as a censored trait. As its MBR ancestor algorithm
introduced by Ritchie [24] in 2001, MB-MDR is non-parametric (no statistical parameter is estimated)
and model-free regarding the genetic model for the gene-gene interaction.

MB-MDR 4.4.1 was conceived by Kristel Van Steen and further developed by Van Lishout et al.
between 2011 and 2015 [26]. MB-MDR is written in C/C++ and can run as stand alone from the
command line or via scripting in UNIX/Linux environment.

Binary versions of the program are available at :
URL : http ://bio3.giga.ulg.ac.be/index.php/software/MB-MDR/

From its software ancestry predecessors, MB-MDR can adjust for main e�ects or for possible popu-
lation substructure (model based pre�x in the name of the software), and was improved for multiple
testing correction computational burden. Since MB-MDR 4.2.2, the latest versions implement the
gammaMAXT fast multiple-testing correction algorithm which shows power comparable to the MaxT
algorithm but requires much less computational resources and time [27].



AppendixB

Simulation workflow and analytical procedures

B.1 Simulation work�ow

B.1.1 Founder population LD pattern

The LD patterns from Haploview from the HapMap 3 data in 500 kb region on chromosome 7
and 8 for 91 unrelated GBR (England and Scotland) individuals are plotted on Figure B.1. A total
of 1751 bi-allelic SNPs are genotyped and are LD characterised. Figure B.2 displays the LD pattern

 

 

 

   DSL 1 
rs17644404  

 DSL 2 D 
rs112698197 

250 kbps from chromosome 8 250 kbps from chromosome 7 

787 SNPS 964 SNPS 

Figure B.1 � LD plots of HapMap3 GBR subpopulation of 91 unrelated individuals. Chromosome
8 on the left with 787 SNPs, chromosome 7 on the right with 964 SNPs. Arrows : two simulated
causal DSL in epistatic relation on two di�erent chromosomes.

detailed view from Haploview for HapMap3 data for GBR subpopulation of 91 unrelated individuals
and in a 250 kb region spanning from 91.525 kb to 91775 kb of chromosome 8. In both �gures,
the arrows refer to the true simulated imposed causal variants with epistatic e�ect that have been
hidden as disease causing phenotype with known penetrance functions to control for e�ect size in
the four di�erent simulation settings.
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  DSL 1 
rs17644404 

 DSL 2 C 
rs1476427 

DSL 2 B 
rs2073640 

DSL 2 A 
rs10956767  

Figure B.2 � LD plots for HapMap3 GBR subpopulation of 91 unrelated individuals. Chromosome
8 with con�guration of 3 other pairs of simulated causal DSL in epistatic relation on the same
chromosome.

B.1.2 Simulated case-control sample LD pattern

After the expansion of founder population and the drawing the case-control sample following the
imposed penetrance table, the LD pattern of a simulated sample with 1000 cases and controls is
shown on Figure B.3.

Figure B.3 � LD pattern of a simulated case-control sample drawn from the expanded population
with imposed penetrance function. The resulting LD pattern is similar to the LD pattern of the
founding population. Note that chromosome 8 is here on the right of chromosome 7.
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B.2 Codes for building the simulation datasets

The set of codes for the production of the 1200 simulated datasets is composed of :

1. A bash script named PyGen parsing 100 iterated names for the dataset output �les to be
generated by a PyGenCC main program for a given setting and a given e�ect size.

2. A main program PyGenCC.py that requires to instantiate the two DSL 1 and DSL 2 loci for
the particular setting, and the e�ect size for the interaction to be provided in the penetrance
table. This main program calls four Python written functions from the simuPOP environment
listed hereafter.

3. Two simuPOP functions LinearExpansion and simuGWAS which expand linearly forward in
time the founder population of 91 unrelated individuals to 10.000 individuals by random mating
while controlling the allele frequencies of DSL 1 and DSL 2.

4. A simuPOP function Penetrance which implements the epistatic interaction between the two
loci and provides a probability for the individual to be a�ected by the disease following a
speci�c logistic regression model with a given e�ect size in the interaction term.

5. A simuPOP function genCaseControlSample implementing the rejection-sampling algorithm
which draws from the previously expanded population n=1000 control una�ected individuals
and n=1000 case a�ected individuals by producing o�spring from population repeatedly until
enough cases and controls are collected.

Generating 100 datasets following this procedure with a single computer core (laptop) takes approxi-
mately 300 minutes. Running 12 bash scripts on a multicore platform will produce the 1200 datasets
in less than 24 hours while 5 full days are necessary on a single laptop.

The produced simulated datasets have the .ped format and can be further processed with PLINK
or MB-MDR.

Code # 1a : Produce 100 simulated datasets for a particular setting and e�ect size PyGen (UNIX-
Linux bash script) : code instance for setting B, with e�ect size = 0,75.

#!/usr/bin/bash

for numb in {1..100};

do

python PyGenCC.py datbor2_${numb}.ped;

done

exit 0
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Code # 1b : Evolving the founder population simuGWAS and LinearExpnasion (Python -
simuPOP functions) :

#--------------------------------------------------------------------------

# DEMOGRAPHIC MODEL and GWAS simulation functions :

#--------------------------------------------------------------------------

def linearExpansion(N0, N1, G):

# Return a linear population expansion demographic function that expands

# a population from size N0 to N1 linearly in G generations. N0 and N1

# should be a list of subpopulation sizes.

step = [float(x - y) / G for x, y in zip(N1, N0)]

def func(gen):

if gen == G - 1:

return N1

return [int(x + (gen + 1) * y) for x, y in zip(N0, step)]

return func

def simuGWAS(pop, mutaRate=1e-8, recIntensity=1e-8, migrRate=0.0001,

expandGen=500, expandSize=[10000], DPL=[], curFreq=[], fitness=[1, 1, 1],

scale=1, logger=None):

# Handling scaling if scaling is appropriate...

mutaRate *= scale

recIntensity *= scale

migrRate *= scale

expandGen = int(expandGen / scale)

fitness = [1 + (x-1) * scale for x in fitness]

pop.dvars().scale = scale

# Demographic function

demoFunc = linearExpansion(pop.subPopSizes(), expandSize, expandGen)

# define a trajectory function

trajFunc = None

introOps = []

if len(DPL) > 0:

sim.stat(pop, alleleFreq=DPL, vars='alleleFreq_sp')

currentFreq = []

for sp in range(pop.numSubPop()):

for loc in pop.lociByNames(DPL):

# marc added :

if loc == 1619:

allelecode = 1 # allele with minor frequency is C for this locus

if loc == 1494:

allelecode = 0 # allele with minor frequency is A for this locus

if loc == 1238:

allelecode = 1 # allele with minor frequency is C for this locus

if loc == 1055:

allelecode = 3 # allele with minor frequency is T for this locus

if loc == 709:

allelecode = 3 # allele with minor frequency is T for this locus

# end marc added

currentFreq.append(pop.dvars(sp).alleleFreq[loc][allelecode])
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print('pop.dvars() = ', pop.dvars())

print('curFreq = ', curFreq)

print('currentFreq = ', currentFreq, 'sum of =', sum(currentFreq))

print('nLoci = ', len(DPL))

if sum(currentFreq) != 0.:

endFreq = [(x - min(0.01, x/5.), x + min(0.01, x/5., (1-x)/5.)) for x in curFreq]

traj = simulateForwardTrajectory(N=demoFunc, beginGen=0, endGen=expandGen,

beginFreq=currentFreq, endFreq=endFreq, nLoci=len(DPL),

fitness=fitness, maxAttempts=1500, logger=logger)

introOps=[]

else:

traj=simulateBackwardTrajectory(N=demoFunc, endGen=expandGen, endFreq=curFreq,

nLoci=len(DPL), fitness=fitness, minMutAge=1, maxMutAge=expandGen,

logger=logger)

introOps = traj.mutators(loci=DPL)

if traj is None:

raise SystemError('Failed to generate trajectory after 1500 attempts.')

trajFunc=traj.func()

if pop.numSubPop() > 1:

pop.addInfoFields('migrate_to')

pop.dvars().scale = scale

# Evolving the founder population

pop.evolve(

initOps=sim.InitSex(),

preOps=[

sim.SNPMutator(u=mutaRate, v=mutaRate),

sim.IfElse(pop.numSubPop() > 1,

sim.Migrator(rate=migrSteppingStoneRates(migrRate, pop.numSubPop()))),

] + introOps,

matingScheme = sim.ControlledRandomMating(loci=DPL, alleles=[1, 0],

freqFunc=trajFunc, ops=sim.Recombinator(intensity=recIntensity),

subPopSize=demoFunc),

postOps = [

sim.Stat(popSize = True, structure=range(pop.totNumLoci())),

sim.Stat(alleleFreq=[1238, 1494], vars='alleleFreq'),

sim.PyEval(r"'At the end of generation %3d : allele Freq is: %.3f\n' % (gen,

alleleFreq[1238][1])", at= [-1]),

sim.PyEval(r"'and other allele Freq is: %.3f\n' % alleleFreq[1494][0]", at=[-1]),

sim.IfElse(pop.numSubPop() > 1,

sim.PyEval(r"'F_st = %.3f\n' % F_st", step=10), step=10)

],

finalOps = sim.SavePopulation(output='pop2.pop', at=[499]),

# save the last population at the last generation

gen = expandGen

)

return pop
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Code # 1c : Implement the penetrance table with logistic regression for the probability of an
individual to be a�ected conditional on its genotye Penetrance (Python - simuPOP) :

#-------------------------------------------------------------------

# Function penetrance returns a logistic

# regression model implementing interaction term (epistasis)

#-------------------------------------------------------------------

def penetrance(beta0, beta1, beta2, beta3):

def func(geno):

#g1 = geno[0] + geno[1]

#g2 = geno[2] + geno[3]

#---------------------------------------------------------------------------------

# for rs2073640 considered functional DSL2B and playing the role of ERAP1 in

# ankylosing spondylitis :

# minor allele = C(1), major = T(3)

# for rs17644404 considered functional DSL1 and playing the role of HLA-B*27 :

# minor allele = A(0), major = T(3)

# with allele coding convention (0, 1, 2, 3) = (A, C, G, T)

#---------------------------------------------------------------------------------

# g1 is the dosage of the major allele of the locus DSL2B in our penetrance model

if int(geno[0] == 1) + int(geno[1] == 1) == 2: # homozygous minor

g1 = 1

elif int(geno[0] == 3) + int(geno[1] == 3) == 2: # homozygous major

g1 = 3

elif geno[0] != geno[1]: # heterozygous

g1 = 2

# g2 is 0 or 1. It is 1 if at least one minor allele is present at the second

# locus (DSL1). g2 is 0 if the second locus is homozygous major.

if int(geno[2] == 3) + int(geno[3] == 3) == 2: # homozygous major

g2 = 0

else:

g2 = 1

# logistic regression model to implement pure epistasis :

logit = beta0 + beta1 * g1 + beta2 * g2 + beta3*g1*g2

prob = 1 / (1. + math.exp(-logit))

print('probability for disease with previous genotype = ', prob)

return 1 / (1. + math.exp(-logit)) # this gives the probability pi

return func
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Code # 1d : Rejection-sampling algorithm to draw cases and controls genCaseControlSample
(Python - simuPOP) :

#--------------------------------------------------------------------

# Generating Case-Control Samples with rejection/sampling algorithm :

#--------------------------------------------------------------------

def genCaseControlSample(pop, nCase, nControl, penetrance):

# Draw nControl unaffected individuals and nCase affected individuals by

# producing offspring from pop repeatedly until enough cases and controls are collected.

# A penetrance operator is needed to assign affection status to each offspring.

sample = pop.clone()

sample.setVirtualSplitter(sim.ProductSplitter([

sim.AffectionSplitter(),

sim.RangeSplitter([[0, nCase], [nCase, nCase + nControl]])]))

sample.evolve(

matingScheme=sim.RandomMating(ops=[

sim.MendelianGenoTransmitter(),

penetrance,

sim.DiscardIf(True, subPops=[(0, 0), (0, 3)])],

subPopSize=nCase + nControl

),

gen=1

)

return sample
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Code # 1f : Main program PyGenCC.py (Python - simuPOP) :

# --------------------------------------------------------------------------

# ----- M A I N ----

#---------------------------------------------------------------------------

#!/usr/bin/python

# This version of the file receives iterated filenames as argument 1,

# run a simuPOP population expansion than generate a case-control

# sample based on a specified penetrance table and finally export

# the sample as formatted .ped file with a name given in argument 1 of the

# calling bash script.

# sys is required for the argument parsing :

import sys

import time

import simuOpt

import matplotlib.pyplot as plt

simuOpt.setOptions(optimized=False, alleleType='long', debug='DBG_WARNING')

import simuPOP as sim

from simuPOP.utils import export

from simuPOP.utils import *

import logging

import random, math

#------------------------------------------------------------------------------

# Check the number of arguments that were parsed if there are the one expected:

#------------------------------------------------------------------------------

if len(sys.argv) < 2:

print('Usage : python ' + sys.argv[0] + ' filename')

exit()

if len(sys.argv) > 2:

print('Error : too many arguments added after the python program.')

exit()

# --------------------------------------------------------------------------

# Get the name of the file to be exported at the end of the process :

# --------------------------------------------------------------------------

exportedFileName = sys.argv[1]

# This will only be used at the end of the main program...

t0 = time.clock()

#---------------------------------------------------------------------------

# Read the input data files with their own correct format expected :

#---------------------------------------------------------------------------

# Read the files with their own format expected :

snps_loci_list, chr_ct_list, bps_list = importSNPs('ch78work.map')

pop1 = importData('ch78work.ped', snps_loci_list, chr_ct_list, bps_list)

sim.dump(pop1)
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#---------------------------------------------------------------------------

# Save the uploaded population that was read from the file into a .pop

# format for later upload :

#---------------------------------------------------------------------------

#pop1.save('pop1saved.pop')

# Then, retrieve this population with 'load ' under a new name :

pop_retrieved = sim.loadPopulation('pop1saved.pop')

# --------------------------

# Allele coding convention :

# --------------------------

# The allele coding convention of the last file is : (0, 1, 2, 3) = (A, C, G, T).

# We keep the allele coding convention as : (0, 1, 2, 3) = (A, C, G, T).

# coding convention of this population :

for i in range(4):

print('allele name = ',i,' : ', pop_retrieved.alleleNames()[i])

print(pop_retrieved.alleleNames())

loc = [1619, 1494, 1238, 1055, 709]

sim.stat(pop_retrieved, alleleFreq=loc, vars='alleleFreq')

#------------------------------------------------------

# Compute LD statistics for pairs of SNPs of interest :

#------------------------------------------------------

# Retrieve marker's name from loci position :

bps = []

for loc in [710, 1056, 1239, 1495, 1620]:

bps.append(bps_list[loc-1])

print('locus :', loc, 'SNP name = ', snps_loci_list[loc-1], 'bps = ', bps_list[loc-1])

# Compute r2 between pairs of interest :

# Compute D prime between pairs of interest

# simuPOP User's guide p.125 :

sim.stat(pop1, LD=[[1494, 1619], [1238, 1619], [1055, 1619], [709, 1619]],

vars=['LD', 'LD_prime', 'R2'])

from pprint import pprint

pprint(pop1.vars())
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pop1_rec = pop_retrieved.clone()

# Compute allele frequencies for the markers of interest and their names:

sim.stat(pop1_rec, alleleFreq=[709, 1055, 1238, 1494, 1619])

for loc in [709, 1055, 1238, 1494, 1619]:

freq = pop1_rec.dvars().alleleFreq[loc]

freqA = pop1_rec.dvars().alleleFreq[loc][0]

freqC = pop1_rec.dvars().alleleFreq[loc][1]

freqG = pop1_rec.dvars().alleleFreq[loc][2]

freqT = pop1_rec.dvars().alleleFreq[loc][3]

print('allele freq = ', freq, 'SNP name = ', snps_loci_list[loc])

print('allele freq for A = ', freqA, 'SNP name = ', snps_loci_list[loc])

print('allele freq for C = ', freqC, 'SNP name = ', snps_loci_list[loc])

print('allele freq for G = ', freqG, 'SNP name = ', snps_loci_list[loc])

print('allele freq for T = ', freqT, 'SNP name = ', snps_loci_list[loc])

# -----------------------------------------------------------------------------

# Expand the founder population (pop1_rec) to a size of 10.000 in 500 generations

# under the linear demographic model.

# Evolve with mutation, recombination, natural selection

# This gives population 'pop2'

#------------------------------------------------------------------------------

# Choose the DSL pair :

# setting A : DSL 1 ='rs17644404', DSL 2 A = 'rs10956767'

# setting B : DSL 1 ='rs17644404', DSL 2 B = 'rs2073640'

# setting C : DSL 1 ='rs17644404', DSL 2 C = 'rs1476427'

# setting D : DSL 1 ='rs17644404', DSL 2 D = 'rs112698197'

DSLA = ['rs10956767', 'rs17644404'] # freq = 0.09

DSLB = ['rs2073640', 'rs17644404'] # freq = 0.33

DSLC = ['rs1476427', 'rs17644404'] # freq = 0.35

DSLD =['rs112698197', 'rs17644404'] # freq 0.19

DSL = ['rs10956767', 'rs17644404', 'rs2073640', 'rs1476427', 'rs112698197']

hapmapAlleleFreq = [0.33, 0.08791] # list of HapMap allele frequency

# The ending target allele frequencies are : 0.40 and 0.05 respectively :

presentFreq = [0.40, 0.05]

fitnessLIST =[1.0, 1.001, 1.002, 1.0, 0.999, 0.999]

pop_expanded = simuGWAS(pop1_rec, mutaRate=0.0, recIntensity=1e-8, migrRate=0.0001,

expandGen=500, expandSize=[10000],

DPL=DSLB, curFreq=presentFreq, fitness=fitnessLIST, scale=1, logger=None)

loc = [1619, 1494, 1238, 1055, 709]

print('pop_expanded : -------------++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')

print('pop_expanded size : ', pop_expanded.popSize())
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#-------------------------------------------------------------------------------

# From the previous population-pop_expanded : Generate a dataset sample of 1000 case

# and control where two loci have been selected as DSL with an epistatic effect.

# The epistasis is implemented via logistic regression (penetrance function

# depending on beta0, beta1, beta2, beta3).

# The result is a dataset sample that you can further process for other analysis.

# The result is affected to 'dsSample'.

# This dataset sample is eventually saved as a .ped file.

#

# ------------------------------------------------------------------------------

sample = genCaseControlSample(pop_expanded, 1000, 1000,

sim.PyPenetrance(func=penetrance(-5, 0, 0, 0.75),

loci=['rs2073640', 'rs17644404']))

print('stat association :', sim.stat(sample, association=sim.ALL_AVAIL))

#------------------------

# Export to .PED format :

#------------------------

# We use the exported file name variable here in the next line :

export(sample, format='ped', output=exportedFileName)

#------------------------------------------------------------------------------------------------

t1 = time.clock()

print("elapsed time ({0}), ({0:.6f}secs)".format(t1-t0))

print("This is for beta 3 = 0.75.")
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B.3 Jobs and codes for LD pruning with PLINK and for GWIS
with MB-MDR

Code # 2a-1 : bash script Jobs (Unix/Linux) : processing 100 simulation �les (e.g
aor1_#inMBmdr.txt)

aor1 refers to the setting A with e�ect size 1 (odds ratio with β3 = 0.90) and # is a �le number
∈ [1, · · · , 100].

The following code calls 100 times the code detailed in code 2a-2. Each time with a di�erent input
�lename.
#!/bin/bash
WORKDIR=/home/u/f043139/simuAor1
sbatch_script_0=${WORKDIR}/sbatch_script_0.sh
#############
# Execution #
#############
for i in {1..100};
do

sbatch --job-name=marc${i} --output=${WORKDIR}/aor1_${i}outMBmdr.log --partition=all_5hrs ${sbatch_script_0} ${i} ${WORKDIR}
done

Code # 2a-2 : MB-MDR steps on each of the simulation dataset - no LD pruning, MB-MDR :

The following code carry out the MB-MDR algorithm on unpruned dataset. The MB-MDR options
are :

� -d 2D : analyse interaction

� -a NONE : no correction for main e�ect

� HvsL : the category "0" (undecided) is excluded from the test comparing H vs L or L vs H in
MDR

� -pb NONE : no progress bar to be print (would otherwise cause a failure in the computer
cluster)

� -v SHORT : verbose shortly
#!/bin/bash
#${1} = i
#${2} = WORKDIR
WORKDIR=/home/u/f043139/simuAor1
SOFTWDIR2=/home/u/f043139/DataMarc
executable=${SOFTWDIR2}/mbmdr-4.4.2.out
options="--binary -d 2D -a NONE -h HVSL -pb NONE -v SHORT"
INPUTDIR=/home/u/f043139/simuAor1
WORKDIR= $2
#############
#############
# Execution #
#############
infile=${INPUTDIR}/aor1_${1}inMBmdr.txt
${executable} ${options} -o ${WORKDIR}/aor1_${1}outMBmdr.txt ${infile}

Code # 2b-1 : bash script Jobs (Unix/Linux) : processing 100 simulation �les (e.g
aor1_#inMBmdr.txt) for LD pruning with PLINK and convert the output �le with proper
format for MB-MDR later input :

#!/bin/bash
WORKDIR=/home/u/f043139/simuAor1
sbatch_script_LD_convert=${WORKDIR}/sbatch_script_LD_convert.sh
#############
# Execution #
#############
for i in {1..100};
do

sbatch --job-name=marc${i} --output=${WORKDIR}/Pru20_aor1_${i}_in_MBmdr.log --partition=all_5hrs ${sbatch_script_LD_convert} ${i} ${WORKDIR}
done
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Code # 2b-2 : PLINK steps and MB-MDR steps - LD pruning at r2 ≥ 0.20 and MB-MDR
format conversion :

#!/bin/bash
#${1} = i
#${2} = WORKDIR

WORKDIR=/home/u/f043139/simuAor1
SOFTWDIR=/home/u/f043139/testfolder
module load plink
executable1=plink
executable2=${SOFTWDIR}/mbmdr-4.4.1-linux-64bits.out
options="--binary -d 2D"
INPUTDIR=/home/u/f043139/simuAor1
#############
# Execution #
#############
# LD Pruning with PLINK at a specified r2 level in 2 steps :
# LD pruning step (a) : get a subset of more independent SNPs with lower redundancy in tagging-SNP :
${executable1} --noweb --ped ${WORKDIR}/dataor1_${1}.ped --map ${WORKDIR}/ch78work.map --indep-pairwise 10 2 0.20 --out ${WORKDIR}/dataor1_${1}_pru20
# LD pruning step (b) : performs the pruning :
${executable1} --noweb --ped ${WORKDIR}/dataor1_${1}.ped --map ${WORKDIR}/ch78work.map --extract ${WORKDIR}/dataor1_${1}_pru20.prune.in
--make-bed --out ${WORKDIR}/pru20aor1_${1}
# Reload the .ped file :
${executable1} --noweb --bfile ${WORKDIR}/pru20aor1_${1} --recode --out pru20aor1_${1}
# .ped and .map are produced by plink....

# .map management step : the purpose is to add a dummy header before conversion to mb-mdr format :
cp ${WORKDIR}/pru20aor1_${1}.map ${WORKDIR}/pru20aor1_${1}_ORIG.map
echo dummy header line > ${WORKDIR}/dummyHeader20_${1}.txt
cat ${WORKDIR}/pru20aor1_${1}.map >> ${WORKDIR}/dummyHeader20_${1}.txt
mv ${WORKDIR}/dummyHeader20_${1}.txt ${WORKDIR}/pru20aor1_${1}.map

# final conversion from .ped to input format for mb-mdr
${executable2} --plink2mbmdr --binary -ped ${WORKDIR}/pru20aor1_${1}.ped -map ${WORKDIR}/pru20aor1_${1}.map
-o ${WORKDIR}/pru20aor1_${1}_in_MBmdr.txt -tr ${WORKDIR}/tr_datAor

Code # 2c-1 : bash script Jobs (Unix/Linux) : processing 100 pruned simulation �les (e.g
pru20aor1_#_in_MBmdr.txt) after LD pruning with PLINK and after format conversion
suitable for MB-MDR input, the batch code called will carry out MB-MDR algorithm on
each of the 100 LD pruned data�les :

#!/bin/bash
WORKDIR=/home/u/f043139/simuAor1
sbatch_script_0=${WORKDIR}/sbatcha_script_75.sh
#############
# Execution #
#############
for i in {1..100};
do

sbatch --job-name=marc${i} --output=${WORKDIR}/Pru20aor1_${i}outMBmdr.log --partition=all_5hrs ${sbatch_script_0} ${i} ${WORKDIR}
done

Code # 2c-2 : MB-MDR analysis of LD pruned dataset :

The MB-MDR options are the same as for the unpruned dataset detailed before.
#!/bin/bash
#${1} = i
#${2} = WORKDIR
WORKDIR=/home/u/f043139/simuAor1
SOFTWDIR2=/home/u/f043139/DataMarc
executable=${SOFTWDIR2}/mbmdr-4.4.2.out
options="--binary -d 2D -a NONE -h HVSL -pb NONE -v SHORT"
INPUTDIR=/home/u/f043139/simuAor1
WORKDIR= $2
#############
# Execution #
#############
infile=${INPUTDIR}/pru20aor1_${1}_in_MBmdr.txt
${executable} ${options} -o ${WORKDIR}/pru20aor1_${1}outMBmdr.txt ${infile}
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B.4 Codes for sensitivity analysis of MB-MDR

The speci�cations and functions of the program Sensitivity.py are the following. The program
receives three �lenames in arguments :

1. Aor1_1outMBmdr.txt is a �le name instance of the MB-MDR output �le containing the
ranked list of the detected marker pairs, the chi-square statistic and the FWER adjusted
p-values (computed from the gammaMAXT algorithm). This �le has three header lines with
4 columns :
First marker Second marker chi-square p-value.

2. DSL1snp20.tags is the �le name of the tag SNP list associated to the �rst known causal
marker of the interacting pair of interest. This �le has no header and two colums and was
produced by PLINK :
tag marker yes/no

rs1234 0

rs1235 1

etc...

3. DSL2snp20.tags is the �le name of the tag SNP list associated to the second known causal
marker of the interacting pair of interest. This �le has no header and two columns and was
produced by PLINK :
tag marker yes/no

rs3456 0

rs3457 1

etc..

The Sensitivity.py program executes the following :

1. Counts the total number of detected SNP pairs (lines) of the MB-MDR output �le : C1.

2. Counts the number of detected SNP pairs that are signi�cant at a p-value level ≤ 0.05. This
is C2.

3. Returns a causal �ag = 1 if the MB-MDR output �le contains both causal variants that are
known to the program through proper initialization (causal variant 1 variable initialized to
'rs1223' and causal variant 2 variable initialized to 'rs5678' for instance if these particular
markers are the known causal interacting SNPs) : C3. If C3 is 1, the corresponding adjusted
p-value is given in C7. The �ag C3 is set to 1 if and only if the p-value is ≤ 0.05.

4. Returns the number of the MB-MDR output �le where both causal variants were found (or
equivalently where a causal �ag = 1 was returned) : C4.

5. Counts the number of signi�cant detected pairs that are composed of two marker SNPs that
belong each to each of the two tag-SNP �les : a counter is incremented when marker 1 ∈
tagSNP1.txt and marker 2 ∈ tagSNP2.txt (or the other way around, i.e, marker 1 ∈
tagSNP2.txt and marker 2 ∈ tagSNP1.txt) or when a causal variant matches a tag-SNP : C5.

6. Calculate the proportion of the signi�cant tag SNPs pairs in the total detected signi�cant
SNP pairs : C6 (= C5/C2) with 3 digits. If C2 = 0, then C6 = NA.

7. Outputs all the previous information in a �le that has only one line (with no header) with
the following tab delimited columns : C1 C2 C3 C4 C5 C6 C7 .

8. Append the previous �le to an existing pre-formatted �le with a header for each of the seven
columns. In the case of the 100 datasets Aor1_${i}outMBmdr.txt (i ∈ [1, . . . , 100]), the
preformatted �le is named Aor1_sensitivity.txt.

The Sensitivity.py program is wrapped in a bash script called SensiBatch to process 100
datasets with a for loop on the �lename number in order to produce the �nal appended �le that



61

will contain 100 lines and from which both the exact sensitivity can be computed (sum of C3
column) and the signal sensitivity can be determined (as well as a quantile of column C6) for the
given setting (particular known pair of causal variants, known e�ect size, known level of pruning).

The 3 data �les should have their directory path indicated in the bash wrapper script.

Code # 3a : bash script SensiBatch (Unix/Linux) :

#!/usr/bin/bash

# Define paths for the input files requested by the Python program:

INPUTDIR1=/home/marc/GIGA/SIMUResults/notpruned_HvsL

INPUTDIR2=/home/marc/GIGA/SIMUResults

for fileNbID in {1..100};

do

# The Python program is named Sensitivity.py and is called from this bash script.

python Sensitivity.py ${INPUTDIR1}/Aor1_${fileNbID}outMBmdr.txt ${INPUTDIR2}/DSL1snp20.tags

${INPUTDIR2}/DSL2Asnp20.tags

done

# exit properly :

exit 0

Code # 3b : code of Sensitivity.py (Python) :

#!/usr/bin/python

# This program receives iterated filenames (Aor1_{$i}outMBmdr.txt) as argument 1 from

# a calling bash script, a DSL1snp20.tags file as argument 2 where the tag SNPs are listed

# from causal variant DSL 1 with LD(r2) = 0.20, a DSL2snp20.tags file as argument 3 where

# the tag SNPs are listed from causal variant DSL 2 with LD(r2) = 0.20.

# DSL 1 and DSL 2 are in pure epistatic interaction.

# The program process the output file of MB-MDR and outputs information that will be used

# to determine both exact sensitivity (power) and signal sensitivity as defined in

# the thesis.

# The paths for the input files are :

# /home/marc/GIGA/SIMUResults ... for both DSLsnp20.tags files

# /home/marc/GIGA/SIMUResults/notpruned_HvsL ... for the MBmdr results output txt file.

# These paths are used in the bash script to parse the right filename with the right

# argument.

# sys is required for the argument parsing :

import sys

#------------------------------------------------------------------------------

# Check the number of arguments that were parsed if there are the ones expected:

#------------------------------------------------------------------------------

if len(sys.argv) < 4:

print('Usage : python ' + sys.argv[0] + ' filenames')

exit()

if len(sys.argv) > 4:

print('Error : too many arguments added after the python program.')

exit()
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# --------------------------------------------------------------------------

# Get the name of the 3 files to be imported as the required inputs :

# --------------------------------------------------------------------------

infile1 = sys.argv[1]

infile2 = sys.argv[2]

infile3 = sys.argv[3]

#----------------------------------------------------------------------------

# Import and read files to retrieve data of interest from the input files

# The 3 requested files paths should be known from this program.

#----------------------------------------------------------------------------

def importPAIRS(filename1):

# Read the SNPs pairs from "filename1" : marker1, marker2,

# their chi-square statistic, and the adjusted p-value.

MBmdrResultsFile = open(filename1, 'r')

marker1 = list() # or = []

marker2 = list()

chi_2 = list()

p_val = list()

Tot_number_of_significant_pairs = 0

# There are normally 3 header lines in this file

# skip the first three header lines :

header_line_1 = MBmdrResultsFile.readline()

header_line_2 = MBmdrResultsFile.readline()

header_line_3 = MBmdrResultsFile.readline()



63

# Read in all the lines that are left till the end of file:

line = MBmdrResultsFile.readline()

line_count = 0

while line != '':

# get all the snps'names:

col = line.split()

FirstMarker = col[0]

SecondMarker = col[1]

statistic = float(col[2])

p = float(col[3])

if p <= 0.05:

Tot_number_of_significant_pairs += 1

marker1.append(FirstMarker)

marker2.append(SecondMarker)

chi_2.append(statistic)

p_val.append(p)

line_count += 1

line = MBmdrResultsFile.readline()

print(line_count, ' lines have been read from the MB-MDR output file.') # C1

print(Tot_number_of_significant_pairs, ' significant SNP pairs have been detected.')

# C2

# close the file :

MBmdrResultsFile.close()

return marker1, marker2, chi_2, p_val, line_count, Tot_number_of_significant_pairs

def importTAGsnp(filenameForTagSNPs):

# There is normally no header for the tag SNP file.

# open the file of interest :

TAGsnpFile = open(filenameForTagSNPs, 'r')

# initialize tagSNPlist :

tagSNPlist = list()

# read the file and select only the tag-SNPs based on second column flag(0/1) :

for line in TAGsnpFile.readlines():

col = line.split()

if int(col[1]) == 1:

tagSNPlist.append(col[0])

# close the file :

TAGsnpFile.close()

return tagSNPlist
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#-----------------------------------------------------------------------------------

# MAIN

#-----------------------------------------------------------------------------------

# Get tag-SNPs for causal variant DSL 1 :

tagSNP1 = importTAGsnp(infile2)

# the length of tagSNPlist is the number of tag-SNPs for the causal variant of interest :

print(len(tagSNP1), ' tag SNPs are associated to DSL1 causal marker.')

print('tag-SNPs list :')

for snp in tagSNP1[0:]:

print(snp)

# Get tag-SNPs for causal variant DSL 2 :

tagSNP2 = importTAGsnp(infile3)

# the length of tagSNPlist is the number of tag-SNPs for the causal variant of interest :

print(len(tagSNP2), ' tag SNPs are associated to DSL2 causal marker.')

print('tag-SNPs list :')

for snp in tagSNP2[0:]:

print(snp)

# Get information from current MB-mdr output file of interest :

FirstMarker, SecondMarker, chi_square, p_value, C1, C2 = importPAIRS(infile1)

# Initialize the current pair of causal loci of interest:

DSL1 = 'rs17644404'

DSL2 = 'rs10956767' # DSL2 A

# DSL2 = 'rs112698197' # DSL2 D

# DSL2 = 'rs1476427' # DSL2 C

# DSL2 = 'rs2073640' # DSL2 B

# Task 1 and Task 2 are the C1 and C2 information retrieved from previous function call.

# Task 3: set a flag to 1 (otherwise 0) if the current MB-MDR file contains the true

# causal pair :

# and if and only if p-value is significant for the pair:

flag = 0

for i in range(C1):

if DSL1 == FirstMarker[i] and DSL2 == SecondMarker[i] and p_value[i] <= 0.05:

flag = 1

idx = i

elif DSL2 == FirstMarker[i] and DSL1 == SecondMarker[i] and p_value[i] <= 0.05:

flag = 1

idx = i

if flag == 1:

C3 = 1

C7 = p_value[idx]

else:

C3 = 0

C7 = 'NA'
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# Task 4 : identifies the number ID of the current MB-MDR output file where

# a pair of causal SNPs were found significant

print('filename = ', infile1)

C4 = 'NA'

if C3 == 1:

pos = infile1.find('out')

if infile1[pos-2].isdigit():

C4 = infile1[pos-2:pos]

else:

C4 = infile1[pos-1]

# Task 5 : counts the number of signal detection (detection of both tag SNPs of the 2

# causal variants):

signal_count = 0

for i in range(C1):

if FirstMarker[i] in tagSNP1 and SecondMarker[i] in tagSNP2 and p_value[i] <= 0.05:

signal_count += 1

print(FirstMarker[i], ' X ', SecondMarker[i], ' is an indirect detection pair.')

elif FirstMarker[i] in tagSNP2 and SecondMarker[i] in tagSNP1 and p_value[i] <= 0.05:

signal_count += 1

C5 = signal_count

# Task 6 : Calculate the proportion of indirect detection among the pairs detected

# significant:

if C2 > 0:

C6 = format(float(C5/C2), '5.3f')

else:

C6 = 'NA'

# Task 7 : Outputs all collected information regarding the current file in a line saved

# in a single lined output file.

detection_output = open('detectionResultLine.txt', 'w')

single_output_line = str(C1)+'\t'+str(C2)+'\t'+str(C3)+'\t'+str(C4)+'\t'+str(C5)+

'\t'+str(C6)+'\t'+str(C7)

detection_output.write(single_output_line)

detection_output.close()

# Task 8 : append the current single_output_line to an existing pre-formatted file with

# proper header for the 7 columns. The existing file is like 'Aor1_sensitivity.txt'.

outfile = open('Aor1_sensitivity.txt', 'a')

outfile.write(single_output_line +'\n')

outfile.close()

print(C1, ' lines were read in the current MB-MDR output file.')

print(C2, ' SNP pairs were detected significant at 0.05 level.')

print(C3, ' 1 yes the causal pair was found significant : direct hit. 0: otherwise.')

if C3 == 1:

print(FirstMarker[idx], ' X ', SecondMarker[idx],

' is the pair of causal variant found significant.')

print(C4, ' ID number of the file where a direct hit of causal pair was detected.')

print(C5, ' indirect detections were found in the file.')

print(C6, ' is the proportion of indirect signal detections among the significant

detections.')

print(C7, ' is the p-value for the direct detection of the causal pair of SNPs.')



66

B.5 Statistical analysis for the real dataset : ankylosing
spondylitis dataset

The jobs and PLINK commands for quality control and statistical analysis of the ankylosing
spondylitis dataset are the following.

Code # 4a : PLINK command for phenotype missingness �ltering :
#!/bin/bash
#SBATCH -p all_5hrs
#SBATCH --job-name=MJOpca
#SBATCH --output=sim-%A.log
module load plink
# -----------------------------------------------------------------
# Step PLINK
# -----------------------------------------------------------------
echo "============================================================="
echo " MEMO: Plink 1.07 : "
echo "============================================================="
# Making a binary PED file :
plink --noweb --file AS_NBS_58C_CH1_to_22_NatureGen --make-bed --out ASfile1

# Remove individuals with missing phenotype :
plink --noweb --bfile ASfile1 --prune --mind 0.02 --make-bed --out ASfile2

Code # 4b : PLINK command to remove SNPs with genotype missing rate ≥ 10% and SNPs
with minor allele frequencies (MAF) less than 1% and Hardy-Weinberg equilibrium
signi�cance test with p-value 5.0e− 15. :

# Remove the SNPs with genotype missing rate > 10%, MAF < 1% and HWE p-value < 5.0E-15 :
plink --noweb --bfile ASfile2 --geno 0.1 --maf 0.01 --hwe 5.0E-15 --make-bed --out ASfile_Cleaned

Code # 4 c : PLINK command for multidimensional scaling (MDS) (or equivalently PCA) to
generate a �le for further graphical display in R. MDS on whole genome after LD pruning at
r2 ≤ 0.03. Genomic In�ation factor and mean chi-squared statistic for strati�cation test :

# Generate files for PCA (Multidimensional Scaling) (check for substructure) :
# Step (a) prune SNPs to get a subset of more independent ones :
plink --noweb --bfile ASfile_Cleaned --maf 0.01 --indep-pairwise 50 5 .03 --out ASfile.prune

## Pruning proper :
plink --noweb --bfile ASfile_Cleaned --extract ASfile.prune.prune.in --make-bed --out ASfileindep

# Check for absence of population substructure :
# Genomic inflation factor in the log file :
plink --noweb --bfile ASfileindep --assoc --adjust --out as_pop_sub1
plink --noweb --bfile ASfileindep --assoc --adjust --gc --out as_pop_sub2gc

# Step (b) generate principal components after pruning can be visualized in R later :
plink --noweb --bfile ASfileindep --genome --out PCAstep1
plink --noweb --bfile ASfileindep --read-genome PCAstep1.genome --cluster --mds-plot 4 --out ibs_view1

Code # 4 f : PLINK command for chromosome 6 analysis of 3 Mbps region around HLA-B locus
and association test to ankylosing spondylitis a�ection status, LD analysis of best SNP list
at r2=0.50 and r2 = 0.20. :

# Making a binary PED file after extracting only the snps in region of HLA coding genes
# in chr 6 (30Mb to 33Mb) from 30000000 bp position to 33000000 bp position as inquired on UCSC Genome web browser :
plink --noweb --bfile ASfile_Cleaned --chr 6 --from-bp 30000000 --to-bp 33000000 --make-bed --out ch6HLA_snps

# Basic association analysis of affection status with single SNPs from chr 6 in HLA region :
plink --noweb --bfile ch6HLA_snps --assoc --out hla_as1

# Basic association analysis of affection status with single SNPs from chr 6 in HLA region
and multiple testing correction :
plink --noweb --bfile ch6HLA_snps --assoc --adjust --out hla_as2

# Obtaining LD values within 1Mb for all SNPs contained in the 30 SNPs best associated with AS :
plink --noweb --bfile ch6HLA_snps --r2 --ld-snp-list MySNP_hla_as.txt --ld-window-kb 1000 --ld-window 99999 --ld-window-r2 0 --out hlaLDallSNPset

# Find tag-SNPs of each SNPs best subset:
# with LD r2 > 0.50
plink --noweb --bfile ch6HLA_snps --show-tags MySNP_hla_as.txt --tag-r2 0.50 --tag-kb 1000 --out hla_tagSNP50

# Find tag-SNPs of each SNPs best subset:
# with LD r2 > 0.20
plink --noweb --bfile ch6HLA_snps --show-tags MySNP_hla_as.txt --tag-r2 0.20 --tag-kb 1000 --out hla_tagSNP20
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Code # 4 g : PLINK command for merging chromosome 5 and chromosome 6 - 3 Mbps region
around HLA-B locus :

# Making a binary PED file after extracting only chromosome 5 :
plink --noweb --bfile ASfile_Cleaned --chr 5 --make-bed --out chr5
# Merge chromosome 5 (with all snps) with chromosome 6 (with only 3Mb region around HLA : 946 snps).
# Note the --recode option to generate .ped and .map format for the merged output file.
# These formats .ped and .map are necessary for later processing by MB-MDR.
plink --noweb --bfile chr5 --bmerge ch6HLA_snps.bed ch6HLA_snps.bim ch6HLA_snps.fam --recode --out chr56HLA

Code # 4 h : PLINK command for LD pruning the merged chromosome 5 and chromosome 6 - 3
Mbps region around HLA-B locus :

#!/bin/bash
#${1} = i
#${2} = WORKDIR
WORKDIR=/home/u/f043139/Projet1
SOFTWDIR=/home/u/f043139/testfolder
module load plink
executable1=plink
options="--binary -d 2D"
INPUTDIR=/home/u/f043139/simuAor1
#WORKDIR= ${2}
#############
# Execution #
#############
# LD Pruning with PLINK at a specified r2 level in 2 steps :
# LD pruning step (a) : get a subset of more independent SNPs with lower redundancy in tagging-SNP :
${executable1} --noweb --ped ${WORKDIR}/chr56HLA.ped --map ${WORKDIR}/chr56HLA.map --indep-pairwise 50 5 0.50 --out ${WORKDIR}/chr56HLA_${1}_pru50
# LD pruning step (b) : performs the pruning :
${executable1} --noweb --ped ${WORKDIR}/chr56HLA.ped --map ${WORKDIR}/chr56HLA.map --extract ${WORKDIR}/chr56HLA_${1}_pru50.prune.in --make-bed --out ${WORKDIR}/pru50chr56HLA_${1}
# Reload the .ped file :
${executable1} --noweb --bfile ${WORKDIR}/pru50chr56HLA_${1} --recode --out pru50chr56HLA1_${1}
# .ped and .map are produced by plink....

# .map management step : the purpose is to add a dummy header before conversion to mb-mdr format :
cp ${WORKDIR}/pru50chr56HLA1_${1}.map ${WORKDIR}/pru50chr56HLA1_${1}_ORIG.map
echo dummy header line > ${WORKDIR}/dummyHeader50_${1}.txt
cat ${WORKDIR}/pru50chr56HLA1_${1}.map >> ${WORKDIR}/dummyHeader50_${1}.txt
mv ${WORKDIR}/dummyHeader50_${1}.txt ${WORKDIR}/pru50chr56HLA1_${1}.map

# final conversion from .ped to input format for mb-mdr
${executable2} --plink2mbmdr --binary -ped ${WORKDIR}/pru50chr56HLA1_${1}.ped -map ${WORKDIR}/pru50chr56HLA1_${1}.map -o ${WORKDIR}/pru50chr56HLA_${1}_in_MBmdr.txt -tr ${WORKDIR}/tr_datAor

Code # 4 i : MB-MDR analysis of the LD-pruned �le :

#!/bin/bash
WORKDIR=/home/u/f043139/Projet1
sbatch_script_0=${WORKDIR}/asbatch_script_50.sh
#############
# Execution #
#############
for i in {1..1};
do

sbatch --job-name=maxNO${i} --output=${WORKDIR}/Pru50as_${i}outMBmdr.log --partition=urtgen_24hrs ${sbatch_script_0} ${i} ${WORKDIR}
done
############## calls for :
#!/bin/bash
#${1} = i
#${2} = WORKDIR

WORKDIR=/home/u/f043139/Projet1
SOFTWDIR2=/home/u/f043139/DataMarc
executable=${SOFTWDIR2}/mbmdr-4.4.2.out
# no correction for main effects and HvsL version with gammaMAX :
options="--binary -d 2D -a NONE -h HVSL -n 5000 -pb NONE -v SHORT"
# H vs L and 0 (undecided) version with gammaMAX :
#options="--binary -d 2D -a NONE -pb NONE -v SHORT"
# correction for main effects ADDITIVE or CODOMINANT :
#options="--binary -d 2D -a ADDITIVE -n 5000 -pb NONE -v SHORT"
#options="--binary -d 2D -a CODOMINANT -n 5000 -pb NONE -v SHORT"
# with MAXT version (too long) :
#options="--binary -d 2D -mt MAXT -a NONE -h HVSL -n 5000 -pb NONE -v SHORT"
#options="--binary -d 2D -mt MAXT -a CODOMINANT -n 5000 -pb NONE -v SHORT"

INPUTDIR=/home/u/f043139/Projet1
WORKDIR= $2
#############
#############
# Execution #
#############
infile=${INPUTDIR}/pru50chr56HLA_${1}_in_MBmdr.txt
${executable} ${options} -o ${WORKDIR}/pru50k5chr56HLA_${1}outMBmdr.txt ${infile}
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Simulation Results

The results for the sensitivities (exact and signal sensitivities) of MB-MDR to detect our two-locus
pure epistatic interaction in the di�erent settings are tabulated in Table C.1 and were graphically
displayed at chapter 3. Table C.1 shows sensitivity results of MB-MDR for the detection of two
epistatic loci in the same LD block (setting A), two epistatic loci in the middle of separate LD
blocks (seeting B), two epistatic loci in separate LD blocks but with one locus at an edge (setting
C), and two epistatic loci in separate LD blocks on di�erent chromosomes (setting D), for three
implemented e�ect sizes and for �ve LD pruning levels. The sensitivities were calculated as the
number of times the epistatic loci were detected out of the 100 simulated datasets that were
constructed following the procedures exposed in Methods.

Table C.1 � Sensitivity results of MB-MDR to detect two locus model of pure epistatic interaction
in 1200 simulated datasets with real human genome LD patterns, for 3 e�ect sizes and after 5 LD
pruning levels.

LD block setting LD pruning E�ect Size Exact Signal Sensitivity
Sensitivity −−−−−−−−−−−−−−−−−−

tag-SNP condition tag-SNP condition
LD r2 ≥ 0.45 LD r2 ≥ 0.20

A unpruned β3 = 0.90 0.61 0.67 0.73
Two SNPs β3 = 0.75 0.55 0.65 0.77
in same β3 = 0.50 0.70 0.85 0.89
LD block −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

LD r2 ≤ 0.75 β3 = 0.90 0.01 0.90 0.91
β3 = 0.75 0.04 0.92 0.94
β3 = 0.50 0.03 0.93 0.93

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.60 β3 = 0.90 0.01 0.93 0.94

β3 = 0.75 0.00 0.94 0.94
β3 = 0.50 0.01 0.92 0.94

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.50 β3 = 0.90 0.00 0.91 0.92

β3 = 0.75 0.00 0.90 0.91
β3 = 0.50 0.01 0.91 0.95

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.20 β3 = 0.90 0.00 0.61 0.74

β3 = 0.75 0.00 0.69 0.80
β3 = 0.50 0.01 0.66 0.84
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Table C.1 � Sensitivity results of MB-MDR to detect two locus model of pure epistatic interaction
in 1200 simulated datasets with real human genome LD patterns, for 3 e�ect sizes and after 5 LD
pruning levels.

LD block setting LD pruning E�ect Size Exact Signal Sensitivity
Sensitivity −−−−−−−−−−−−−−−−−−

tag-SNP condition tag-SNP condition
LD r2 ≥ 0.45 LD r2 ≥ 0.20

B unpruned β3 = 0.90 0.54 0.75 0.75
Two SNPs β3 = 0.75 0.46 0.70 0.71
in middle β3 = 0.50 0.41 0.75 0.76
of two −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
separate LD r2 ≤ 0.75 β3 = 0.90 0.64 0.91 0.91
LD blocks β3 = 0.75 0.58 0.91 0.91

β3 = 0.50 0.44 0.93 0.94
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.60 β3 = 0.90 0.49 0.92 0.92

β3 = 0.75 0.41 0.93 0.93
β3 = 0.50 0.27 0.94 0.95

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.50 β3 = 0.90 0.39 0.92 0.92

β3 = 0.75 0.32 0.93 0.93
β3 = 0.50 0.23 0.94 0.95

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.20 β3 = 0.90 0.19 0.57 0.81

β3 = 0.75 0.16 0.69 0.91
β3 = 0.50 0.21 0.83 0.92

C unpruned β3 = 0.90 0.18 0.33 0.43
One SNP β3 = 0.75 0.23 0.36 0.49
in a block β3 = 0.50 0.18 0.36 0.51
and one −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
in the edge LD r2 ≤ 0.75 β3 = 0.90 0.0 0.65 0.74
of a separate β3 = 0.75 0.0 0.72 0.83
LD block β3 = 0.50 0.0 0.57 0.76

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.60 β3 = 0.90 0.0 0.56 0.74

β3 = 0.75 0.0 0.59 0.81
β3 = 0.50 0.0 0.47 0.74

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.50 β3 = 0.90 0.0 0.48 0.71

β3 = 0.75 0.0 0.50 0.81
β3 = 0.50 0.0 0.36 0.70

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.20 β3 = 0.90 0.0 0.07 0.60

β3 = 0.75 0.0 0.05 0.62
β3 = 0.50 0.0 0.04 0.57
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Table C.1 � Sensitivity results of MB-MDR to detect two locus model of pure epistatic interaction
in 1200 simulated datasets with real human genome LD patterns, for 3 e�ect sizes and after 5 LD
pruning levels.

LD block setting LD pruning E�ect Size Exact Signal Sensitivity
Sensitivity −−−−−−−−−−−−−−−−−−

tag-SNP condition tag-SNP condition
LD r2 ≥ 0.45 LD r2 ≥ 0.20

D unpruned β3 = 0.90 0.39 0.68 0.82
Two SNPs β3 = 0.75 0.40 0.69 0.81
on LD blocks β3 = 0.50 0.58 0.76 0.84
of separate −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
chromosomes LD r2 ≤ 0.75 β3 = 0.90 0.18 0.86 0.94

β3 = 0.75 0.18 0.93 0.99
β3 = 0.50 0.23 0.84 0.90

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.60 β3 = 0.90 0.14 0.87 0.94

β3 = 0.75 0.13 0.93 0.98
β3 = 0.50 0.17 0.85 0.90

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.50 β3 = 0.90 0.13 0.85 0.92

β3 = 0.75 0.13 0.93 0.97
β3 = 0.50 0.16 0.83 0.89

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LD r2 ≤ 0.20 β3 = 0.90 NA NA NA

β3 = 0.75 0.10 0.67 0.86
β3 = 0.50 0.17 0.75 0.84



AppendixD

Real life dataset results on ankylosing spondylitis

D.1 Population substructure analysis results

The visual inspection of the graphs of Figure D.1 for the principal components does not indicate
any obvious substructure pattern. So, the absence of population substructure is reasonable in the
WTCCC2 dataset on ankylosing splondylitis.

D.2 Single loci association analysis

Table D.1 � Genotype table of rs2523608 SNP for a�ection status.

Genotype
AA Aa aa total
'TT' 'TC' 'CC'

CASES 845 603 26 1474
CONTROL 1689 2288 807 4784

total 2534 2891 833 6258

As an example of single locus association analysis, we tabulate each genotype (homozygote AA,
heterozygote Aa and homozygote aa) against case and control. We have a 2 rows by 3 columns, so
the test will have (2− 1)(3− 1) = 2 degrees of freedom, for each SNP. This basic allele test makes
no assumptions about the genetic model.

The genotype of the rs2523608 SNP in the HLA-B region of chromosome 6 is in Table D.1 (the
314 cases with unspeci�ed gender were removed from the calculation and 15 controls with
incomplete genotypes were also removed).
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Figure D.1 � Applying multidimensional scaling (MDS) for population substructure analysis in the
ankylosing spondylitis WTCCC2 dataset : controls (blue points) and cases (red triangles) by gender.
Features space : subset of 22861 stochastically independent SNPs on 22 autosomal chromosomes.
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Figure D.2 � Manhattan plot of ankylosing spondylitis a�ection status association test for 946
SNPs genotypes in the chr 6 region around HLA-B locus. Vertical hyphenated black line : HLA-B
locus position. Red triangles : 30 most signi�cant SNPs results. Circled red triangles : rs2523608 in
HLA-B locus and rs2523554 7 kbs centromeric to HLA-B locus. All red and blue markers are in LD
r2 > 0.50 altogether. Green bars are SNPs in LD r2 > 0.20 with 30 most signi�cant SNPs results.
Grey bars are SNPs at LD r2 < 0.20 with red SNPs.
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The allele test for rs2523608 SNP then yields Table D.2.

Table D.2 � Allele association test of rs2523608 SNP to a�ection status.

Alleles
Major allele A Minor allele a total

'T' 'C'

CASES 2293 655 2948
CONTROL 5666 3902 9568

total 7959 4557 12516

This polymorphic nucleotide (SNP rs2523608) has a='C' as minor allele and A='T' has major
allele. The minor allele frequency in the general population is MAF= 40% for 'C' ('T' is 60%). The
allele frequency is signi�cantly di�erent for the cases : 22.2% for a='C' minor allele as compared to
40.78% for the 'C' nucleotide for the the controls (similar to the general population). The allele
test for association formally tests for the null hypothesis that the allele proportions are the same

for cases and controls. The null hypothesis is rejected if the χ2
obs. =

∑
i,j

(Oij−Eij)
2

Eij
is too large. The

p-value is obtained as the probability to have such a large or a more extreme χ2, under the null,
than this observed χ2

obs. value. Here, we have χ
2
obs. = 335.4 with an associated p-value for 2 degrees

of freedom, equals to 6.34 · 10−75. Hence, for this single test, the null hypothesis is clearly rejected
that the allele proportion are the same between cases and controls.

When 946 SNPs are tested, we adjust the p-values for controlling the false discovery rate (FDR)
correcting for multiple testing by the Benjamini-Hochberg (FDR-BH) procedure.

The Manhattan plot showing the AS a�ection status association allele test FDR-BH adjusted
p-values as a function of base pair position of 946 polymorphic nucleotides (SNPs) in HLA-B

neighbouring region of chromosome 6 is displayed on Figure D.2

The 30 nominally most signi�cant SNPs of this chromosome 6 region are outlined in Table D.3 and
sorted by decreasing FDR-BH adjusted p-values (-log10 scale).

D.3 Multiple loci association analysis

The remaining SNPs after the LD-pruning are outlined in Table D.4 by the LD-pruning r2 levels :
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Table D.3 � Allele test best associated SNPs of chr 6 HLA-B region to a�ection status.

SNP BP -log10(FDR-BH adj. p-value)

30 rs2523554 31439808 65.53
29 rs12665700 31104111 67.29
28 rs1042127 31192149 70.26
27 rs2523608 31430537 71.78
26 rs3094212 31193749 73.58
25 rs9266689 31456559 73.64
24 rs2269425 32231617 73.79
23 rs2261033 31711570 82.93
22 rs2844511 31497763 85.94
21 rs2516448 31498389 85.94
20 rs2243868 31369255 86.45
19 rs2524089 31374501 89.31
18 rs6929796 31630648 89.74
17 rs2246954 31373241 92.61
16 rs2071596 31614670 93.97
15 rs10947121 31107976 101.60
14 rs2844498 31584833 106.47
13 rs6457300 31106721 107.60
12 rs1265048 31189388 114.33
11 rs2284178 31540104 116.54
10 rs9295961 31275477 123.03
9 rs1841 31238739 129.73
8 rs1265156 31250276 135.90
7 rs9501522 31292404 136.25
6 rs4959053 31207556 139.83
5 rs2233984 31187243 147.45
4 rs9380215 31157634 150.03
3 rs4947296 31166157 150.20
2 rs4495304 31188697 150.67
1 rs3868542 31253818 158.27

Table D.4 � Remaining SNPs after LD-pruning in the AS merged chromosome 5 and 6 (3Mbps
region around HLA-B) dataset.

LD pruning r2 level SNPs on chr 5 SNPs on chr 6 Total SNPs

no pruning 30.723 946 31.669
LD r2 ≥ 0.75 20.450 545 20.995
LD r2 ≥ 0.50 13.798 335 14.133
LD r2 ≥ 0.20 5930 110 6.040
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Glossary

Admixed population � population in which mating occurs between subgroups with di�erent
allelic distributions, or more loosely a population in which multiple subgroups are present.

Allelic phase � alignment of nucleotides on a single homolog.

Ascertainment � the act of ascertaining, the process of determining which individuals are
sampled and included in the study (case �nding) ; or what are the characteristics, status, or
events in a population or study group, e.g. exposure ascertainment. Ascertainment bias :
systematic failure to represent equally all classes of cases or persons supposed to be
represented in a sample.

Case-control design � type of retrospective study design widely used in epidemiological
studies, especially genome-wide association studies. People with a speci�c disease (cases) are
chosen with people who do not have the disease (controls). The basic idea is to compare
genotypes of cases and controls. If alleles or genotypes at a locus are signi�cantly di�erent in
cases and controls, theses alleles or genotypes are claimed to be associated with the disease
status. Because disease outcome might be in�uenced by other characteristics such as sex, age
or ethnicity, cases and controls are matched so that these characteristics are similar in these
two groups.

Compositional epistasis � the blocking of one allelic e�ect by an allele at another locus.

Confounding � phenomenon whereby the measure of association between two variables is
distorted because other variables, associated with both variables of interest, are not
controlled for in the analysis.

Epistasis � Biological epistasis describes a masking e�ect, whereby a variant or allele at one
locus masks the expression of a phenotype at another locus (biological gene-gene interaction).
Statistical epistasis describes the situation where the combined e�ect of two or more loci
cannot be predicted from the sum of their individual single-locus e�ect (statistical gene-gene
interaction). In its broadest sense, epistasis refers to the the dependence of the outcome of a
mutation on the genetic background.

Gametic Phase Disequilibrium � the correlation between genes at di�erent loci in the same
gamete or equivalently the non-random association of alleles within gametes. Unlinked loci
(even on di�erent chromosomes) can be associated and are said to be in gametic phase
disequilibrium ; abbreviated GPD. There is complete confounding between interaction and
GPD.

Genotype � observed pair of DNA bases, one inherited from each parent, at a site on the
genome (locus), represented by a categorical variable that takes on values from a prede�ned
set of discrete characters.

GWAS � exploratory investigation of genotype-trait association that involves characterization of
a large segment (500-1000 kbp region) of DNA or a whole genome (∼ 3.200 Mbp) ;
Genome-wide Association Study, abbreviated GWAS.
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Haplotype � refers to the speci�c combination of alleles that are in alignment on a single
homolog, de�ned as one of the two homologous chromosomes in humans.

Haplotype tagging SNP � sites on the genome that capture overall variability within the gene
under consideration and are potentially associated with disease causing variants.

Hardy-Weinberg equilibrium � state in which allele frequencies are constant within a
population over generations, or equivalently independence of alleles at a single site between
two homologous chromosomes, also referred to as random mating ; abbreviated HWE.
Hardy-Weinberg Disequilibrium is a measure of allelic association between two homologous
chromosomes at a single site.

Heritability � in the broad sense, it is the ratio of the genetic variance to the phenotypic
variance. In the narrow sense, it is the ratio of the additive components of the genetic
variance to the phenotypic variance.

Homolog � one member of a pair of homologous chromosomes.

IBD � Identity by descent : 2 alleles at the same genetic marker locus, from 2 individuals
(o�spring), are called identical by descent (IBD) if these 2 alleles are copies of the identical
allele carried by a recent common ancestor. In the case of siblings, this means that the allele
shared IBD is from the same parental chromosome, assuming no inbreeding.

IBS � Identity by status : 2 alleles at the same genetic marker locus, from 2 individuals, are
called identical by state (IBS) if their DNA sequence is physically identical, i.e., both alleles
are A or a, for instance.

Linkage disequilibrium � the measure of allelic association between two di�erent sites on the
genome or the non-random association of alleles due to linked loci (in this latter case it is a
special case of GPD) ; abbreviated LD.

Locus � portion of the genome that encodes a single gene or the location of a single nucleotide
on the genome.

Marker � proximate SNP at which the genotype tends to be associated with the genotype at the
true disease-causing locus.

Minor allele � less common allele in a population ; used interchangeably with variant allele.

Penetrance � a measure of the extent to which the presence of a disease allele results in the
disease phenotype. The penetrance function describes the conditional probabilities of
exhibiting the disease phenotype given the genotype variants under study : P (Y |G) where
Y = 1 for a case Y = 0 for a control and G = dd or G = Dd or G = DD for a bi-allelic
genotype. In Mendelian model, the penetrance is equal to one (fully penetrant) for a given
value of the genotype while it is less than one in complex traits (reduced penetrance).

Phenocopy � characteristic of an individual who exhibits the disease phenotype but does not
carry the disease allele under study.

Population substructure or strati�cation � presence of multiple subgroups between which
there is minimal mating or gene transfer ; also referred to as population strati�cation.

Proband � an a�ected individual who is identi�ed independently of everyone else.

SNP � describes a single base pair change that is variable across the general population at a
frequency of at least 1% ; Single Nucleotide Polymorphism.
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